Skip to menu Skip to content Skip to footer

You're viewing this site as a domestic an international student

You're a domestic student if you are:

  • a citizen of Australia or New Zealand,
  • an Australian permanent resident, or
  • a holder of an Australian permanent humanitarian visa.

You're an international student if you are:

  • intending to study on a student visa,
  • not a citizen of Australia or New Zealand,
  • not an Australian permanent resident, or
  • a temporary resident (visa status) of Australia.
You're viewing this site as a domestic an international student
Change
Contact us Contact us

 

Call us

We have the answers to your questions.

 Send an enquiry

Email us, and we’ll get back to you as soon as possible.

 

Find an agent

Find a UQ agent near you.

Find an agent

 

Contact us Contact us

 

Call us

We have the answers to your questions.

 Send an enquiry

Email us, and we’ll get back to you as soon as possible.

 

Find an agent

Find a UQ agent near you.

Find an agent

 

 A farmer tills a field with his tractor

Bachelors of Computer Science / Science

Overview

Combine your studies in computer science with a Bachelor of Science, and graduate with qualifications that place you at the forefront of today's technology-driven job market.

Study this four-year dual program to obtain two qualifications in less time and graduate with in-demand skills, ready to make a difference in solving some of world's most challenging problems.

Computer science combines the theoretical studies of algorithms and data structures with the practical challenges of implementing them in hardware and software systems. Skills learnt in this program are used in fields ranging from bioinformatics to digital humanities.

You'll develop the strong analytical, logical and development skills necessary to advance computing and its applications. You can specialise in cyber security, data science, machine learning, programming languages or scientific computing.

In the science program, students can select from a broad-based set of courses, which lay the foundation for completing a specialised major in later years. Choose from a wide range of majors to develop your interdisciplinary scientific knowledge and practical skills while pursuing studies that suit your interests and ambitions, with the freedom to mix and match course combinations.

When you graduate, you can anticipate high employability rates and attractive starting salaries because of the skills and expertise you'll develop through this program.

Location
St Lucia
Duration
4 Years (or part time equivalent)
Start Semester
Semester 1 (19 Feb, 2024), Semester 2 (22 Jul, 2024)
QTAC Code
733601
Program Code
2484
AQF
Level 7
Location
St Lucia
Fees
A$50440
Duration
4 Years
Start Semester
Semester 1 (19 Feb, 2024), Semester 2 (22 Jul, 2024)
QTAC Code
733601
Program Code
2484
CRICOS Code
096361C
AQF
Level 7

Program highlights

Program highlights

  • Build your technical expertise through a combination of laboratory-based practicals and workshops, plus Australian or international field studies, internships and work experience.
  • Choose your speciality from a huge range of science disciplines, amongst the widest in Australia.
  • Graduate with skills that are in high demand from some of the world's largest corporations, such as Apple, Google, Oracle and Microsoft.
  • Benefit from a program developed in close consultation with industry leaders.

1 in Queensland for computer science and information systems

QS World University Rankings 2024

1 in Queensland for biological sciences

QS World University Rankings 2024

Watch What's it really like to study computer science at UQ? on YouTube.

Majors

Tailor your studies to suit your goals. This program offers these options:

  • Applied Mathematics
  • Applied Mathematics
  • Archaeological Science
  • Archaeological Science

How you'll learn

Your learning experiences are designed to best suit the learning outcomes of the courses you choose.

  • Lectures
  • Tutorials
  • Laboratory work
  • Fieldwork
  • Seminars
  • Workshops

What you'll study

Career possibilities

Our programs prepare you for your first job and beyond. Depending on which major you choose, here are some of the careers you could be on your way to:

  • Biosecurity officer
  • Historical archaeology consultant
  • Biopharmaceutical scientist
  • Biomedical scientist
  • Senior project chemist
  • Data scientist
  • Environmental adviser
  • Gene technologies scientist
  • Environmental health officer

Graduate salary

Computing and information systems (undergraduate)

$58K–$83K

compared.edu.au

Graduate salary

Science and mathematics (undergraduate)

$40K–$85K

compared.edu.au

Next steps after graduation

82.5% of graduates are in full-time employment (Computer and Information Systems Quality Indicators for Learning and Teaching, 2019)

All of Australia's top five emerging jobs feature automation or Artificial Intelligence (AI) skills (LinkedIn 2020 Emerging Jobs Report Australia)

Demand for technology workers will grow by 100,000 between 2018 and 2024 (ACS Australia's Digital Pulse 2019)

Australia’s technology workforce has seen average trend growth of 2.5% per annum between 2011 and 2018, outpacing growth in the overall Australian labour market of 1.7% over this period. (Australia's Digital Pulse 2019)

Entry requirements

Prerequisites

Queensland Year 12 (or equivalent) General English subject (Units 3 & 4, C); Mathematical Methods (Units 3 & 4, C); and one of Biology, Chemistry, Earth and Environmental Science, or Physics (Units 3 & 4, C). Specialist Mathematics (Units 3 & 4, C) is recommended.

Students without Specialist Mathematics (or equivalent) may be required to undertake preparatory courses beyond the 64 units for the program and may not be able to complete the program in the minimum time frame without overloading or undertaking summer study.

Prerequisites

Queensland Year 12 (or equivalent) General English subject (Units 3 & 4, C); Mathematical Methods (Units 3 & 4, C); and one of Biology, Chemistry, Earth and Environmental Science, or Physics (Units 3 & 4, C). Specialist Mathematics (Units 3 & 4, C) is recommended.

Students without Specialist Mathematics (or equivalent) may be required to undertake preparatory courses beyond the 64 units for the program and may not be able to complete the program in the minimum time frame without overloading or undertaking summer study.

Entry score threshold

ATAR / RankIB
8430.5

These are the lowest adjusted scores we made an offer to in Semester 1, 2024. Entry scores are based on the most recent Semester 1 intake and are updated in April each year. Meeting the entry score threshold doesn't guarantee admission.

Guarantee your place at UQ: If you meet our guaranteed minimum ATAR you could secure an offer for your preferred program.

English language requirements

IELTS overall 6.5; reading 6; writing 6; speaking 6; listening 6. For other English Language Proficiency Tests and Scores approved for UQ

TOEFL iBT (including Paper Edition) - Overall 87, listening 19, reading 19, writing 21 and speaking 19.

PTE Academic - Overall Score of 64 and 60 in all sub bands.

BE - A minimum overall grade of 4 plus a minimum grade of C in all macro skills.

CES - Overall 176 and 169 in all sub bands.

OET is not accepted.

 

There are other ways to meet the English language requirements. For some programs, additional conditions apply.

Learn how to meet the English language requirements

Student visas

International students who are accepted into full-time study in the Bachelors of Computer Science / Science are eligible to apply for an Australian student visa (subclass 500).

There are a number of requirements you must satisfy before a visa is granted, including the Genuine Student (GS) requirement.

Learn more about student visas

Entry score range

This table shows the range of entry scores for recent secondary students offered a place in the B Computer Science/BScience for Semester 1, 2024

Without adjustmentsWith adjustments
Highest99.4599.95
Median92.594.45
Lowest84.7584.75

Who you'll study with

Here's a snapshot of our student intake for this program in Semester 1, 2024:

Applicant backgroundNumber of studentsPercentage of all students

(A) Higher education study

<5<5

(B) Vocational Education and Training (VET) study

00%

(C) Work and life experience

00%
(D) Recent secondary education
  • Admitted solely on the basis of ATAR
N/PN/P
  • Admitted where ATAR and additional criteria were considered
00%
  • Admitted on the basis of other criteria only and ATAR was not a factor
00%

International students

00%

Total

19100%

"<5" — The number of students is less than 5.
N/A — Students not accepted in this category.
N/P — Not published. The number is hidden to protect the privacy of students in other cells.

Need help meeting the entry requirements?

We can help you meet the minimum entry score, subject prerequisites or English language requirements for your preferred program.

If you haven't studied the prerequisites or need to improve your entry score, we can help.

Learn about pathway options

Majors and minors

Majors

Tailor your studies to suit your goals. This program offers these options:

Did you know that mathematical modelling is used to create disease models that enable scientists to better understand infectious diseases?

Study applied mathematics and learn how advanced mathematical methods are used to develop practical solutions in a variety of real-world contexts.

Build your foundational knowledge in core topics such as applied mathematical analysis, mathematical modelling and the numerical methods used in computer programming.

You'll develop your critical thinking skills and learn advanced mathematical techniques for approaching problems in a logical, analytical and creative manner.

You'll then have the opportunity to apply your expertise in areas of interest such as natural resources mathematics, or operations research and mathematical planning.

With practical experience gained through work placements, you'll be prepared for a diverse range of career opportunities in sectors such as financial services, engineering, technology and sciences.

View

Examine key developments in human evolution, civilisation and our relationship with the world around us.

In this major, you’ll develop and apply your knowledge through a combination of theory-based and practical learning – including lab and field-based research projects. By completing these projects, you'll gain experience in surveying, excavation and scientific analysis.

Combine core archaeology courses with electives and expand your knowledge of geography, earth sciences, biology and psychology.

Future work includes positions in museums, consultancies, government departments, cultural centres, law enforcement, educational and research institutions.

View

This hands-on, investigatory, creative and foundational science forms the basis of how we understand all living systems.

You’ll study the molecules, systems and chemical processes that make life possible.

  • Discover what drives current research into vaccines and causes of life-threatening diseases.
  • Explore the latest applications in eco-friendly industrial processes, agriculture and sustainable food production.
  • Visualise the future in synthetic biology, biotechnology, proteomics, genomics, bioinformatics, genetic engineering and drug design.

Your award-winning lecturers are experts who will help you understand and use the latest scientific and industry tools through extensive practical laboratory experience, structured tutorials and specialised seminars.

Career paths include some of the most exciting and challenging roles in agriculture, health, biotechnology and environmental sectors. You’ll find employment as a research biochemist or molecular biologist in pharmaceutical development laboratories in universities, research institutes and companies trying to understand cellular processes, investigating diseases affecting animals and plants, or searching for new biological tools.

View

Apply scientific expertise and technical skills to translate complex biological data into meaningful information. Study bioinformatics to develop your knowledge in computer science, genomics, proteomics and molecular biology.

Gain skills in machine learning and statistics, and specialised knowledge in data management.

You’ll learn to apply this knowledge to new innovations or discoveries. Equip yourself for a career in computational modelling and intelligent systems involving big data.

Focus on either the computational concepts for solving problems in the biological sciences or on understanding the fundamental challenges facing biologists.

A worldwide shortage of trained bioinformaticians and computational biologists means there’s high demand for your interdisciplinary skills. You’ll be equipped to work in pharmaceutical, biotechnology and medical technology companies, research organisations and governments.

View

Examine the complex relationship between mind, body and disease to treat, cure and prevent disease.

Study molecular biology, genetics, physiology, anatomy and immunology – then apply your knowledge in laboratories where medical breakthroughs are taking place.

You’ll put theory into practice and work alongside researchers and healthcare professionals to conduct medical research and test the effectiveness of treatments.

Studying biomedical science can prepare you for a research-based honours program, or employment within the healthcare industry, government, not-for-profit organisations or universities.

View

Help transform the way we detect disease, develop new treatments, or sustainably feed a growing world population.

Study cell biology to deepen your understanding of how cellular, genetic, and evolutionary processes affect everyday life.

Examine key concepts and techniques to understand genetic information and investigate cellular processes and cell development in a range of organisms. You’ll apply microscopic techniques to observe how cells function in healthy and diseased states.

The growing availability of biological data is allowing unprecedented discoveries in areas as diverse as human medicine, agriculture, conservation biology and biotechnology. You'll learn from leading scientists who have contributed to breakthroughs across biotechnology, animal, plant and medical sciences.

Studying cell biology will equip you for a range of career opportunities within research, biotechnology, agriculture, medicine, conservation or government agencies.

View

Chemistry is an enabling science that provides a foundation for fields such as education, technology and the environment.

You’ll learn the fundamentals of general, physical, organic and inorganic chemistry and specialise in areas such as:

  • synthetic chemistry, where you explore the synthesis of complex molecules used in drugs, explosives, paints and cosmetics
  • computational chemistry, involving the use of advanced theoretical calculations and high-power supercomputers to understand and predict the structures and reactivities of molecules and short-lived intermediate species
  • nanoscience, to explore the processes of self-assembly enabling the controlled arrangement of atoms and molecules and the chemistry at interfaces
  • medicinal chemistry, to explore molecular design and the modification of compound properties to enhance pharmaceutical applications as evaluated through bioassays.

All of these areas involve access to advanced instrumental techniques and the development of skills that employers value.

You will be equipped to pursue a diverse range of career opportunities. These include roles as a chemist, materials scientist, environmental scientist, biochemist, toxicologist or forensic scientist.

Other jobs include scientific journalist, quality assurance manager, pharmaceutical sales representative, patent examiner, teacher, and roles in marketing and conservation.

This major is accredited by the Royal Australian Chemical Institute.

View

Examine the intricate relationship between climate, coastal systems and marine environments to solve complex challenges facing our oceans.

In this major, you'll dive into the scientific study of coastal processes, oceanography, ecology, marine geology and marine conservation. 

You’ll learn to apply a wide range of evidence-based environmental and conservation strategies to protect vital coastal habitats and marine ecosystems across the globe.

Guided by Australia’s leading marine researchers, you’ll gain extensive fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.

Enhance your employability by combining your speciality with a minor in a broad range of complementary fields, including ecology and conversation biology, earth science, genetics, microbiology or computational science.

Demand for highly skilled coastal and marine scientists is on the rise. You’ll find opportunities in various fields including:

  • teaching and universities
  • fisheries laboratories
  • environmental consultancies 
  • marine parks
  • coastal management
  • government departments.

View

As computers become increasingly interconnected and support more services than ever, securing these systems becomes more challenging and more crucial.

By studying cyber security, you'll learn the fundamental processes and practices to protect computing systems from attack, damage or unauthorised access.

You'll study secure programming techniques and ethical hacking to safeguard individuals, businesses and governments against cybercrime, and you'll graduate with highly valued and employable skills.

Career paths can lead to roles such as cyber security analyst, cyber systems engineer or information security officer.

Join a growing industry

  • Cyber security specialist was the #2 emerging job of 2020 (LinkedIn 2020 Emerging Jobs Report).
  • By 2026, Australia will need 18,000 more cyber security workers.
  • Australia’s external spending on cyber security products and services grew by eight per cent in 2018 to $3.9 billion (Australian Cyber Security Growth Network).

View

Our world is recording more data than we have the ability to process, which presents enormous challenges associated with data storage, management and analysis.

You'll learn comprehensive and fundamental techniques for end-to-end processing that transforms data into information, and prepare to become one of the new breed of data science professionals.

This major will prepare you for a career in government departments, consultancy or private sector organisations.

Join a growing industry

  • The rise of big data means data scientists are now some of the most in-demand professionals in the world.
  • Data scientist was the #7 top emerging job of 2020 (LinkedIn 2020 Emerging Jobs Report).

View

Learn scientific techniques to sustainably manage the Earth’s minerals, energy sources or natural resources.

You’ll learn how remote-sensing technologies and geographic information systems (GIS) are used to analyse geological processes and monitor changes in the Earth’s environment.

Dig deeper into our mineral and energy sources by exploring topics such as mineral and rock analysis, mining geology, environmental geology or geochemistry. Develop and apply your knowledge through practical laboratory experience, fieldwork, and specialised seminars.

You may choose to study electives in coastal and ocean science to deepen your understanding of oceanography and help create a sustainable future for marine environments.

You’ll be equipped to pursue a career in the natural resource, energy or environmental sectors. Alternatively, help contribute to new scientific knowledge by progressing into a research-based honours degree.

View

Broaden your understanding of how organisms interact with each other and their environments, and be part of the solution for protecting our natural world.

Ecology and conservation biology are vital for solving the environmental challenges our society is facing today.

You’ll be taught by internationally renowned conservation experts, and can choose to specialise in conservation biology, marine ecology or evolutionary ecology.

Gain real-world experience in solving ecological problems by conducting fieldwork in a range of rainforest, outback and marine environments.

You’ll be equipped to tackle global issues such as biodiversity loss, climate change, diminishing natural resources and the environmental impacts of human activity.

Employment demand has risen strongly over the past 5 years with roles available in government departments and agencies, private industry or environmental organisations.

View

Follow your passion for food to create a rewarding career in one of Australia’s largest industries.

Take a scientific approach to the study of food and its consumption. You'll study all aspects of the food system from farming, processing and distribution, to how food is selected and consumed, and how it affects our health.

Food is one of largest industries in the world and offers a diverse range of career opportunities in the fields of nutrition, food science and technology, education, and research and development.

View

Follow your passion for food to create a rewarding career in one of Australia’s largest industries.

We integrate theory with practice. Learn about the scientific composition of foods and the chemical reactions that take place during processing.

Study key aspects in the development of food products and develop your expertise in food preservation, processing operations, quality assurance and consumer product testing.

You'll then have the opportunity to apply your knowledge and build your industry connections with work placements at leading food manufacturing organisations.

You'll be prepared to work in areas such as product development, quality assurance and food safety, food microbiology, research and development, food standards and policy, or sales and marketing.

View

Genetics is transforming the way we investigate diseases, develop medical treatments, protect endangered species and create food security.

You’ll advance your knowledge in genetic structure, genetic interaction and the genetic basis of traits.

We'll expand your critical thinking and teach you to analyse complex biological data using the latest genetic technologies.

You’ll learn to translate genetic information into meaningful insights that may lead to new discoveries.

Studying genetics will prepare you for a broad range of opportunities across ecology, research, medicine and agriculture.

View

Explore the study of spatial patterns of physical and human phenomena at local, national and global scales.

Blending theory with real-world experience, you’ll learn to apply geographical information science (GIS) software and remote-sensing technologies for data analysis, data modelling and developing map visualisations.

We broaden your critical thinking and teach you how to apply GIS to solve key environmental, societal or planning issues facing today’s modern world.

You’ll be equipped to pursue a broad range of career opportunities, including roles in natural resource management, national parks and wildlife conservation.

View

Machine learning is the study of algorithms that automatically improve performance with experience.

These algorithms allow computers do things like automatically identify and harness useful data to help decision-making, find hidden insights without being explicitly programmed where to look, and predict outcomes of certain policies to help authorities design effective policies.

You'll graduate with skills at the forefront of this massive growth area as society looks for automated and continuous improvements on how to enhance business and our lives through the use of computing systems and data.

These skills can be applied in government departments, consultancy or private sector organisations.

Join a growing industry

  • Artificial intelligence specialist was the #1 emerging job of 2020 (LinkedIn 2020 Emerging Jobs Report).
  • AI could contribute up to $15.7 trillion to the global economy in 2030 (PwC research).
  • New AI technologies will require highly-skilled workers who can develop and maintain complex systems and applications.

View

Apply key principles from ecology, zoology, botany and genetics to examine marine life and investigate their biological relationship to their natural environments.

Guided by Australia’s leading marine researchers, you’ll be exposed to a variety of marine habitats and environmental conditions.

You'll gain extensive fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.

We'll show you how to apply a wide range of evidence-based ecological and environmental strategies to protect and sustainably manage vital marine organisms and ecosystems across the globe.

You'll be prepared for a broad range of career opportunities within research and education, aquaculture, wildlife conservation and ecotourism.

View

Choose from more than 30 different courses in mathematics and statistics to suit your interests and career goals.

This major will challenge and expand your problem-solving, logical thinking and conceptual ability. You'll gain quantitative and analytical skills, along with a foundation of calculus, linear algebra, probability, discrete mathematics, mathematical analysis and modelling.

You’ll develop and apply your knowledge through practical experience, structured tutorials and specialised lectures.

Our comprehensive mathematical training equips you for a broad range of opportunities in banking, finance, insurance, business, engineering, science, information technology and risk management.

Studying mathematics also gives you a strong foundation to continue into a higher degree by research and excel in research positions within universities, government agencies and private companies.

View

Microbiology is at the forefront of protection against infectious diseases.

You’ll study microorganisms, the immune system, microbial virulence, disease states and response to infection.

Learn how vaccines protect animals and humans from infectious diseases. Discover the latest advances in vaccine development from your lecturers who are globally recognised experts.

You’ll focus on immunology, virology, parasitology, environmental microbiology, microbial biotechnology and microbial genomics. Study bacterial, fungal and viral infections.

Apply your knowledge in weekly laboratory practicals. Gain skills in specialist biomedical and molecular techniques used to diagnose and characterise infectious microbes and in the development of new diagnostics. Problem-based scenarios will enhance your analytical, research and communication skills.

The growth in biotechnology, aquaculture and emerging disease threats to plant, animal and human health globally has increased job opportunities for microbiologists. You’ll be equipped for roles in agriculture, environmental, chemical, pharmaceutical, medical, food processing and veterinary companies. Studying microbiology can lead to rewarding career opportunities in specialist areas such as forensics, biosecurity and quarantine in government agencies.

Or kickstart your career in research by progressing into a research-based honours degree.

View

Dive deep into the complexities of the human immune system to transform the way we treat and prevent disease.

You’ll gain a comprehensive understanding of how our immune systems can be harnessed to prevent, treat and cure diseases.

Investigate the role of microorganisms such as bacteria, viruses and parasites in disease; the molecular basis of immune recognition; and the regulation of immune response in a range of infectious diseases.

Learn immunological techniques for developing vaccines and immunotherapies, as well as practical applications in biotechnology, microbiology, genetics, and cell and molecular biology.

You’ll be taught by leading researchers working in laboratories where current medical breakthroughs are taking place. You'll apply your theoretical knowledge and build your technical skills through practical laboratory sessions and small group tutorials.

You’ll be equipped for a range of opportunities in hospitals, research institutions, biotechnology firms, pharmaceutical companies or universities.

Studying immunity and infectious disease will prepare you for further study in the field of medicine or to progress into a research-based honours program.

View

Deepen your understanding of how and why things work.

Led by internationally recognised researchers, you’ll study the laws of physics and explore how these principles are applied in our everyday life – from understanding the nature of time to developing new technologies.

You'll be able to combine your scientific and mathematical knowledge with skills in computer programming and statistics to understand theories relating to quantum mechanics, biophotonics, astronomy or astrophysics. Or apply your knowledge to develop advanced materials, electronic and optical devices.

Your high-level technical, analytical and problem-solving skills will lead you to a wide range of rewarding opportunities in sectors such as education, finance, engineering, computing and management.

Alternatively, continue into a higher degree by research to uncover new scientific knowledge or apply your findings to develop new devices, products or processes.

View

Help to solve 2 of the biggest problems facing humans today: food security and our dependency on fossil fuels.

In this major, you’ll learn and apply the science behind breeding high-yielding, pest-resistant crops to help farmers increase their productivity.

You'll study ecology, plant pathology, plant physiology and plant biotechnology, and apply your knowledge to use plant-based sources to develop biofuels, medicines or healthier food products.

Studying plant science can lead to rewarding career opportunities as a researcher, consultant or teacher with multinational companies, universities or government departments.

View

Programming languages are the building blocks of software in computer science.

Covering the different paradigms of programming, this major focuses on the design of computer languages that can be easily used to create programs.

You will study the craft and science of programming, and graduate with the skills to enable the construction of effective programming languages and reliable software.

Programming opens doors beyond tech

  • Programmers write software that can be used to create websites, build computer networks, help doctors treat patients, or even drive a car.
  • Half of all programming roles are in finance, manufacturing, health care, and other sectors outside of the technology industry.
  • Coding skills can take you places: data analytics, scientists, engineers and designers all use coding.

View

Study how people behave, think and feel.

In this major, you'll explore topics like brain function, memory, conscious experience, lifespan development and social behaviour, together with the full spectrum of functional and dysfunctional behaviours.

Graduates undertake careers in human resources, mental health services, youth and child support work, or fields a diverse as marketing, aged care and corrective services.

View

Make a positive difference to people's lives by learning how to measure, plan, manage and evaluate health programs and services to prevent illness and promote good health in communities.

Public health is founded on a multidisciplinary understanding of health that allows you to explore and examine the basis of disease and wellbeing by considering human behaviour, physical environments, socio-economic and cultural factors, and systems of healthcare management.

The Public Health major provides a broad overview of public health and the critical issues it confronts. To establish core understanding of this field, you will examine the foundational disciplines of public health, including epidemiology, biostatistics, health systems, environmental health and social sciences.

Studying public health can lead to a variety of roles within public and global health, health research or public health policy.

View

Computers hold the key for fast and efficient analysis of complex scientific problems.

However, computers are digital systems, requiring discrete inputs and outputs, while mathematical analysis often relies on continuous functions. Therefore, careful approximations are necessary to enable computers to analyse complex mathematical functions.

You will study algorithms for mathematical analysis and graduate with skills used in various scientific endeavours, including in hospitals and university medical research and big pharmaceutical and petrochemical companies across the public and private sectors.

Join a growing industry

  • Help solve the complex scientific problems of the future using mathematical analysis.
  • The digital technology sector is one of the fastest growing parts of Australia’s economy.
  • Data engineer was the #8 emerging job of 2020 (LinkedIn 2020 Emerging Jobs Report).

View

Apply the tools of modern statistics to inform data-driven decision-making and solve real-world problems.

In this major, we combine theory with practical experience to expand your critical thinking, enhance your analytical capabilities and develop your technical skills.

You'll discover how statistics are used to help solve real-world problems, such as improving medical treatments through data-driven experimental design, or using meteorological and spatial data to assess drought conditions in local communities.

You'll learn and apply statistical techniques to analyse and interpret complex data, and transform it into meaningful insights.

Statisticians and data analysts are in high demand across business, industry, research and government to forecast, analyse and solve a variety of complex issues.

View

Learn how animals relate and interact with their physical and biological environments.

Through this major, you’ll investigate animal morphology, development and genetics, behaviour, ecology, physiology, biochemistry and molecular biology.

We'll expand your knowledge of climate change biology, wildlife and conservation biology, entomology, environmental physiology, marine biology, fisheries biology and aquaculture, terrestrial ecology, molecular ecology and mathematical applications in biology.

You can combine your study of animals with biostatistics, ecology, evolution, genetics and insect science, and gain practical experience through field courses offered in the Australian outback, rainforests, Stradbroke Island and the Great Barrier Reef.

Zoology offers a large number of career options, ranging from field-based conservation work to biomedical research with medical laboratories and education institutions.

Alternatively, kickstart your career in research by progressing into a higher degree by research.

View

Minors

Tailor your studies to suit your goals. This program offers these options:

Study applied mathematics and learn how advanced mathematical methods are used to develop practical solutions in a variety of real-world contexts.

Learn advanced mathematical techniques to solve problems in a logical, analytical and creative manner.

Build your foundational knowledge in core topics such as calculus and linear algebra, multivariate calculus and ordinary differential equations, and applied mathematical analysis.

You'll gain practical mathematical skills that can be applied to any field.

You'll then have the opportunity to apply your expertise in areas of interest such as natural resources mathematics, or operations research and mathematical planning.

View

Examine key developments in human evolution, civilisation and our relationship with the world around us.

In this minor, you’ll develop and apply your knowledge through a combination of theory-based and practical learning.

Combine the core archaeology course with electives and expand your knowledge of past human-animal relationships, our long-term history of plant use, or managing our cultural heritage.

Future work includes positions in museums, consultancies, government departments, cultural centres, law enforcement, and educational and research institutions.

View

Deepen your understanding of the universe and our place in it.

Led by internationally recognised researchers, you’ll explore theories behind the creation of the Universe to understand the origin and evolution of galaxies, stars and planets.

Examine the fundamental laws of physics behind how particles and radiation were created, how galaxies and planetary systems form, and how environments for life develop.

You’ll study the physical processes behind the structure of the Milky Way, star formation, stellar atmospheres, gravitational waves, the creation of matter and the cosmic microwave background.

Learn to build computer simulations of the Universe to investigate some of the big questions in modern astrophysics and cosmology, including:

  • What are dark energy and dark matter?
  • How did the Universe begin and how did it end?
  • Where did the contents of the Universe come from?
  • How and when do galaxies form?

You’ll have access to state-of-the-art computing facilities as well as specialised tools and instruments used in astrophysics research.

A minor in astrophysics will prepare you for a research career in astrophysics or other scientific fields. You’ll be well placed to continue into a research-based honours degree.

Studying physics courses can also lead to working as a data scientist, banking or financial analyst, management consultant, or careers in the space industry, medical physics, mining or the environment.

View

Study the molecular events controlling the growth and development of cells and organisms in all living things.

In this minor, you'll develop a comprehensive understanding of the chemical basis of life and its relevance to research and development in areas like medicine, proteomics, genomics, synthetic biology, biotechnology and genetic engineering.

Learn how molecular events can go wrong in certain diseased states and how this contributes to the development of new drugs.

You’ll develop and apply your knowledge through practical laboratory experience, structured tutorials and specialised seminars.

Career paths lead to some the most exciting and challenging roles in science and medicine, from laboratories, hospitals or government agencies to specific positions in research.

View

More industries are embracing genetic technologies. Study bioinformatics and help shape the way we manage our health and environment.

Gain specialised knowledge in statistics, data management, computer programming, genomics and molecular biology.

You’ll apply your scientific expertise and technical skills to translate complex biological data into meaningful information. Your insights may lead to new innovations or discoveries.

Studying bioinformatics will prepare you for a wide range of opportunities in scientific research organisations, universities, government departments and within the biotechnology or pharmaceutical industries.

View

Be at the forefront of new biological knowledge that revolutionises the way we cure disease, develop new technologies or create new renewable energy sources.

Biophysics sits at the crossroads of biology, physics and chemistry. You’ll apply core principles from physics and chemistry to deepen your understanding of how complex biological systems work.

Study computer modelling techniques and key methods of mathematical analysis to examine the relationships between the physical properties and how molecules, cells and core systems within the human body function.

Deepen your understanding of how nerve cells communicate, and use scientific techniques to examine the structures of proteins, viruses, and other complex molecules.

Studying biophysics gives you interdisciplinary training, meaning you can adapt to a variety of working environments from universities and research centres to industry and government.

View

Help transform the way we detect disease, develop new treatments or sustainably feed a growing world population.

Investigate how cellular, genetic and evolutionary processes affect everyday life.

Examine key concepts and techniques to understand genetic information, and investigate cellular processes and cell development in a range of organisms. You’ll apply microscopic techniques to observe how cells function in healthy and diseased states.

The growing availability of biological data is allowing unprecedented discoveries in areas as diverse as human medicine, agriculture, conservation biology and biotechnology. You'll learn from leading scientists who have contributed to breakthroughs across biotechnology, and animal, plant and medical sciences.

Studying a minor cell biology will add depth to your scientific knowledge and enhance your employability for a wide range of opportunities within research, biotechnology, agriculture, medicine, conservation or government agencies.

View

Develop specialist knowledge at the interface of chemistry and biology.

Gain chemical knowledge about cellular processes and biomolecular interactions, and explore the chemical, computational and imaging techniques used to analyse them.

You'll apply the principles of inorganic and organic chemistry to investigate the nature of chemical reactions in biological systems at the molecular level.

Studying chemical biology will complement courses in biochemistry and molecular biology, genetics, biological and biomedical sciences.

You'll be well-placed to progress into a research-based honours degree.

View

Chemistry is an enabling science that provides a foundation for fields such as education, technology and the environment.

You’ll learn the fundamentals of general, physical, organic and inorganic chemistry and specialise in areas such as:

  • synthetic chemistry, where you explore the synthesis of complex molecules used in drugs, explosives, paints and cosmetics
  • computational chemistry, involving the use of advanced theoretical calculations and high-power supercomputers to understand and predict the structures and reactivities of molecules and short-lived intermediate species
  • nanoscience, to explore the processes of self-assembly enabling the controlled arrangement of atoms and molecules and the chemistry at interfaces
  • medicinal chemistry, to explore molecular design and the modification of compound properties to enhance pharmaceutical applications as evaluated through bioassays.

All of these areas involve access to advanced instrumental techniques and the development of skills that employers value.

View

Examine the intricate relationship between climate, coastal systems and marine environments to solve complex challenges facing our oceans.

In this minor, you'll dive into the scientific study of coastal processes, oceanography, ecology, marine geology, and marine conservation.

You’ll learn to apply a wide range of evidence-based environmental and conservation strategies to protect vital coastal habitats and marine ecosystems across the globe.

Guided by Australia’s leading marine researchers, you’ll gain fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.

Studying a minor in coastal and ocean science will add depth to broad range of complementary fields including ecology and conversation biology, earth science or zoology.

You’ll be equipped for a broad range of opportunities in areas such as:

  • natural resource management
  • conservation
  • environmental management
  • education
  • government departments.

View

Apply your technical skills and mathematical knowledge to translate complex data into meaningful insights that help shape our future.

Recent advances in technology give scientists the ability to collect and process more data than ever before.

Computational science combines fundamental principles from computer science, mathematics and statistics to solve scientific problems across any specialist field.

Develop your skills in computational thinking and apply computational problem-solving strategies to design algorithms for collecting, processing and analysing vast amounts of data from various sources.

Apply your programming skills to construct large-scale mathematical models and simulations to analyse and interpret real-world data and generate meaningful insights.

You’ll learn to create a range of data visualisations and graphics to communicate your findings to scientific and non-scientific audiences.

Skills in computational science are essential for all scientific disciplines and any career where computational techniques are required for problem-solving, forecasting, data analysis or data visualisation.

View

Be at the forefront of advances in modern medicine. Study developmental biology and learn how organisms are formed from a single cell.

Understanding human and animal development is fundamental to medicine and biomedicine.

State-of-the-art medical therapeutic strategies are built on innovative discoveries from developmental biology, including stem cells, cell engineering, artificial organs, 3D printing and tissue regeneration.

Developmental biology is key to understanding health and disease. It consolidates knowledge from anatomy, physiology, genetics, molecular biology and pharmacology to provide students with an integrated understanding of human development.

Learn from leading researchers and apply your theoretical knowledge in the laboratories where medical breakthroughs are taking place.

You'll be prepared for a range of career opportunities within health, science, research or academia. You’ll have the specialist knowledge and skills required to progress into further study in the field medicine or a research-based honours program.

View

Learn scientific techniques to sustainably manage the Earth’s minerals, energy sources or natural resources.

You’ll learn how remote-sensing technologies and geographic information systems (GIS) are used to analyse geological processes and monitor changes in the Earth’s environment.

Dig deeper into our mineral and energy sources by exploring topics such as mineral and rock analysis, sedimentology magmas and deformed rocks. Develop and apply your knowledge through practical laboratory experience, fieldwork, and specialised seminars.

You may choose to combine your minor with a courses in coastal and ocean science or marine biology to deepen your understanding of oceanography and help create a sustainable future for marine environments.

You’ll be equipped to pursue a career in the natural resource, energy or environmental sectors. Alternatively, help contribute to new scientific knowledge by progressing into a research-based honours degree.

View

Broaden your understanding of how organisms interact with each other and their environments, and be part of the solution for protecting our natural world.

Ecology and conservation biology are vital for solving the environmental challenges our society is facing today.

You’ll be taught by internationally renowned conservation experts and can choose to specialise in conservation biology, marine ecology or evolutionary ecology.

Gain real-world experience in solving ecological problems by conducting fieldwork in a range of rainforest, outback and marine environments.

You’ll be equipped to tackle global issues such as biodiversity loss, climate change, diminishing natural resources and the environmental impacts of human activity.

Employment demand has risen strongly over the past 5 years with roles available in government departments and agencies, private industry and environmental organisations.

View

Help protect our natural world to enhance the quality of life for humans, animals and plants.

Insects have an enormous impact on the environment, human health and world economies. They play a significant role in spreading disease and reducing global food shortages, and are vital indicators of environmental change.

Examine how insects interact with and adapt to their environments, and understand their vital role within ecosystems. You’ll combine theory and practice to explore topics relating to pest management, insect physiology, insect identification and taxonomy.

Learn from leading researchers who are actively involved with a wide variety of projects. Apply your knowledge to understand the impacts of climate change, inform conservation strategies, or apply eco-friendly pest management strategies to protect crops and livestock.

Alternatively, kickstart your career in research by progressing into a research-based honours degree.

View

Genetics is transforming the way we investigate diseases, develop medical treatments, protect endangered species and create food security.

You’ll advance your knowledge in genetic structure, genetic interaction and the genetic basis of traits.

We'll expand your critical thinking and teach you to analyse complex biological data using the latest genetic technologies.

You’ll learn to translate genetic information into meaningful insights that may lead to new discoveries.

Studying genetics will prepare you for a broad range of opportunities across ecology, research, medicine and agriculture.

View

Explore the study of spatial patterns of physical and human phenomena at local, national and global scales.

Blending theory with real-world experience, you’ll learn to apply geographical information science (GIS) software and remote-sensing technologies for data analysis, data modelling and developing map visualisations.

We broaden your critical-thinking and teach you how to apply GIS to solve key environmental, societal or planning issues facing today’s modern world.

You’ll be equipped to pursue a broad range of career opportunities, including roles in natural resource management, national parks and wildlife conservation.

View

Demystify the complexities of the human body and contribute to enhancing human health.

Having a holistic understanding of how the human body works is fundamental for detecting disease and developing new or improved treatments.

Study a minor in human anatomy to acquire in-depth knowledge of cell, tissue and organ systems within the human body. You’ll gain practical skills in dissection and examine prosected cadavers to deepen your knowledge of gross human anatomy.

Apply your anatomical data-analysis skills to investigate how systems contribute to human growth and development, as well as how they're linked to diseases and disorders.

Strengthen your knowledge of the complex relationship between the body, mind and disease by combining your Human Anatomy minor with related courses in human physiology, neuroscience or pharmacology.

Knowledge in human anatomy underpins a wide range of careers opportunities in the health sector, including those with a biomedical science focus.

You’ll be equipped with the anatomical knowledge required to apply for further study in the field of medicine or allied health. Alternatively, kickstart your career in research by progressing into a research-based honours program.

View

Deepen your understanding of the human body to lead positive change in human health.

Examine how cell, tissue and organ systems function within the human body.

Learn the vital roles played by our brain, nerves and hormones in controlling cardiovascular, respiratory, reproductive and metabolic processes important to our survival.

Apply scientific methods to investigate how the failure of these systems can result in disease or disorders.

Study physiological functions at a molecular and cellular level to examine how the body’s core processes are altered in diseased states.

Develop a holistic understanding of the complex links between the body, mind and disease by combining your Human Physiology minor with related courses in human anatomy, neuroscience, pharmacology, or food science and nutrition.

In-depth knowledge of human physiology is essential if you are considering further study in the field of medicine, biomedical science or allied health. It can also lead to a range of career opportunities across the health, science or pharmaceutical sectors.

View

Dive deep into the complexities of the human immune system to transform the way we treat and prevent disease.

Study immunology to gain a comprehensive understanding of the human immune system and how it can be used to prevent, treat and cure diseases such as cancer.

You’ll investigate the role of microorganisms in disease, the molecular basis of immune recognition, and the regulation of immune response in a range of infectious diseases.

Learn immunological techniques for developing vaccines and immunotherapies as well as practical applications in biotechnology, microbiology, genetics, and cell and molecular biology.

You’ll be taught by leading researchers who are working in the laboratories where current medical breakthroughs are taking place.

You’ll be equipped for a range of opportunities in hospitals, research institutions, biotechnology firms, pharmaceutical companies or universities.

This minor will prepare you for further study in the field of medicine or to continue onto a research-based honours program.

View

Apply key principles from ecology, zoology, botany and genetics to examine marine life and investigate their biological relationship to their natural environments.

Guided by Australia’s leading marine researchers, you’ll be exposed to a variety of marine habitats and environmental conditions.

You'll gain extensive fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.

We'll show you how to apply a wide range of evidence-based ecological and environmental strategies to protect and sustainably manage vital marine organisms and ecosystems across the globe.

You'll be prepared for a broad range of career opportunities within research and education, aquaculture, wildlife conservation and ecotourism.

View

Challenge and expand your problem-solving, logical thinking and conceptual ability

You'll gain quantitative and analytical skills, along with a strong foundation of knowledge across calculus, linear algebra, discrete mathematics, mathematical analysis and number theory.

Our mathematical training equips you for a broad range of opportunities in banking, finance, insurance, business, engineering, science, information technology and risk management.

Studying mathematics also equips you to continue into a higher degree by research and excel in research positions within universities, government agencies and private companies.

View

Microbiology is at the forefront of protection against infectious diseases.

In this minor, you'll study the diversity of microorganisms, the immune system, microbial virulence, disease states and the ways organisms respond to infection.

You'll learn how vaccines protect animals and humans from infectious diseases, and discover the latest advances in vaccine development from lecturers who are globally recognised experts.

Focusing on the key areas of immunology, virology, parasitology, environmental microbiology, microbial biotechnology and microbial genomics, you'll study bacterial, fungal and viral infections and apply your knowledge in weekly laboratory practicals.

You'll confidently use the specialist biomedical and molecular techniques required to diagnose and characterise infectious microbes and to develop new diagnostics. Problem-based scenarios will enhance your analytical, research and communication skills.

This minor will add depth to your biological sciences knowledge and equip you with essential technical skills to enhance your employability or prepare you for a career in research.

View

Reimagine how we develop new treatments and drive technological advances that shape our world’s future.

Study neuroscience to deepen your understanding of how the human brain and nervous system function.

Examine the complexities of the brain and nervous system to explore how neural systems develop, process sensory information, control our movement, form memories, react to stress, respond to disease and store vital information about the world around us.

Combine your minor in neuroscience with courses across anatomy, physiology, pharmacology, molecular biology and cellular biology to prepare yourself for further study in the field of medicine, or to continue into a research-based honours degree in science or biomedical science.

You may choose to apply your neuroscience knowledge to help power artificial intelligence by studying courses across mathematics, statistics, computer science or physics.

Studying neuroscience will equip you to enter the workforce in fields as diverse as business, biotechnology, health, science or the pharmaceutical industry.

View

Revolutionise the way we use existing drugs and develop new medicines to help prevent and combat disease.

Study pharmacology to learn the science behind how drugs work to treat and cure diseases.

You’ll gain comprehensive knowledge on how drugs work in the human body at the molecular cellular and whole-body level, and discover why many drugs do not work in every patient.

You'll learn how active chemical agents in medicines affect our cells, tissue or organs to examine their benefits, side effects and interactions on human health. And you'll be taught the latest techniques to test drug effects and how to evaluate their benefits and risks in treating human diseases.

Gain vital research experience while you study by contributing to projects that could lead to new medical breakthroughs.

A minor in pharmacology will prepare you for employment and research opportunities within healthcare organisations, medical research institutions, pharmaceutical or biotechnology companies, universities and hospitals.

View

Deepen your understanding of how and why things work.

Led by internationally recognised researchers, you’ll study the laws of physics and explore how these principles are applied in our everyday life – from understanding the nature of time to developing new technologies.

You'll be able to combine your scientific and mathematical knowledge with skills in computer programming and statistics to understand theories relating to quantum mechanics, biophotonics, astronomy or astrophysics. Or apply your knowledge to develop advanced materials, electronic and optical devices.

Your high-level technical, analytical and problem-solving skills will lead you to a wide range of rewarding opportunities in sectors such as education, finance, engineering, computing and management.

Alternatively, continue into a higher degree by research to uncover new scientific knowledge or apply your findings to develop new devices, products or processes.

View

Help to solve 2 of the biggest problems facing humans today: food security and our dependency on fossil fuels.

In this minor, you’ll learn and apply the science behind breeding high-yielding, pest-resistant crops to help farmers increase their productivity.

You'll study ecology, plant pathology, plant physiology and plant biotechnology, and apply your knowledge to use plant-based sources to develop biofuels, medicines or healthier food products.

Studying plant science can lead to rewarding career opportunities as a researcher, consultant or teacher with multinational companies, universities or government departments.

View

Study how people behave, think and feel.

In this minor, you'll explore topics like brain function, memory, conscious experience, lifespan development and social behaviour, together with the full spectrum of functional and dysfunctional behaviours.

Graduates undertake careers in human resources, mental health services, youth and child support work, or fields a diverse as marketing, aged care and corrective services.

View

Apply the tools of modern statistics to inform data-driven decision making and solve real-world problems.

In this minor, we combine theory with practical experience to expand your critical thinking, enhance your analytical capabilities and develop your technical skills.

You'll discover how statistics are used to help solve real-world problems, such as improving medical treatments through data-driven experimental design, or using meteorological and spatial data to assess drought conditions in local communities.

You'll learn and apply statistical techniques to analyse and interpret complex data, and transform it into meaningful insights.

Statisticians and data analysts are in high demand across business, industry, research and government to forecast, analyse and solve a variety of complex issues.

View

Learn how animals relate and interact with their physical and biological environments.

Through this minor, you’ll investigate animal morphology, development and genetics, behaviour, ecology, physiology, biochemistry and molecular biology.

We'll expand your knowledge of climate change biology, wildlife and conservation biology, entomology, environmental physiology, marine biology, fisheries biology and aquaculture, terrestrial ecology, molecular ecology and mathematical applications in biology.

You can combine your study of animals with biostatistics, ecology, evolution, genetics and insect science, and gain practical experience through field courses offered in the Australian outback, rainforests, Stradbroke Island and the Great Barrier Reef.

Zoology offers a large number of career options, ranging from field-based conservation work to biomedical research with medical laboratories and education institutions.

Alternatively, kickstart your career in research by progressing into a higher degree by research.

View

Majors

Tailor your studies to suit your goals. This program offers these options:

Did you know that mathematical modelling is used to create disease models that enable scientists to better understand infectious diseases?

Study applied mathematics and learn how advanced mathematical methods are used to develop practical solutions in a variety of real-world contexts.

Build your foundational knowledge in core topics such as applied mathematical analysis, mathematical modelling and the numerical methods used in computer programming.

You'll develop your critical thinking skills and learn advanced mathematical techniques for approaching problems in a logical, analytical and creative manner.

You'll then have the opportunity to apply your expertise in areas of interest such as natural resources mathematics, or operations research and mathematical planning.

With practical experience gained through work placements, you'll be prepared for a diverse range of career opportunities in sectors such as financial services, engineering, technology and sciences.

View

Examine key developments in human evolution, civilisation and our relationship with the world around us.

In this major, you’ll develop and apply your knowledge through a combination of theory-based and practical learning – including lab and field-based research projects. By completing these projects, you'll gain experience in surveying, excavation and scientific analysis.

Combine core archaeology courses with electives and expand your knowledge of geography, earth sciences, biology and psychology.

Future work includes positions in museums, consultancies, government departments, cultural centres, law enforcement, educational and research institutions.

View

This hands-on, investigatory, creative and foundational science forms the basis of how we understand all living systems.

You’ll study the molecules, systems and chemical processes that make life possible.

  • Discover what drives current research into vaccines and causes of life-threatening diseases.
  • Explore the latest applications in eco-friendly industrial processes, agriculture and sustainable food production.
  • Visualise the future in synthetic biology, biotechnology, proteomics, genomics, bioinformatics, genetic engineering and drug design.

Your award-winning lecturers are experts who will help you understand and use the latest scientific and industry tools through extensive practical laboratory experience, structured tutorials and specialised seminars.

Career paths include some of the most exciting and challenging roles in agriculture, health, biotechnology and environmental sectors. You’ll find employment as a research biochemist or molecular biologist in pharmaceutical development laboratories in universities, research institutes and companies trying to understand cellular processes, investigating diseases affecting animals and plants, or searching for new biological tools.

View

Apply scientific expertise and technical skills to translate complex biological data into meaningful information. Study bioinformatics to develop your knowledge in computer science, genomics, proteomics and molecular biology.

Gain skills in machine learning and statistics, and specialised knowledge in data management.

You’ll learn to apply this knowledge to new innovations or discoveries. Equip yourself for a career in computational modelling and intelligent systems involving big data.

Focus on either the computational concepts for solving problems in the biological sciences or on understanding the fundamental challenges facing biologists.

A worldwide shortage of trained bioinformaticians and computational biologists means there’s high demand for your interdisciplinary skills. You’ll be equipped to work in pharmaceutical, biotechnology and medical technology companies, research organisations and governments.

View

Examine the complex relationship between mind, body and disease to treat, cure and prevent disease.

Study molecular biology, genetics, physiology, anatomy and immunology – then apply your knowledge in laboratories where medical breakthroughs are taking place.

You’ll put theory into practice and work alongside researchers and healthcare professionals to conduct medical research and test the effectiveness of treatments.

Studying biomedical science can prepare you for a research-based honours program, or employment within the healthcare industry, government, not-for-profit organisations or universities.

View

Help transform the way we detect disease, develop new treatments, or sustainably feed a growing world population.

Study cell biology to deepen your understanding of how cellular, genetic, and evolutionary processes affect everyday life.

Examine key concepts and techniques to understand genetic information and investigate cellular processes and cell development in a range of organisms. You’ll apply microscopic techniques to observe how cells function in healthy and diseased states.

The growing availability of biological data is allowing unprecedented discoveries in areas as diverse as human medicine, agriculture, conservation biology and biotechnology. You'll learn from leading scientists who have contributed to breakthroughs across biotechnology, animal, plant and medical sciences.

Studying cell biology will equip you for a range of career opportunities within research, biotechnology, agriculture, medicine, conservation or government agencies.

View

Chemistry is an enabling science that provides a foundation for fields such as education, technology and the environment.

You’ll learn the fundamentals of general, physical, organic and inorganic chemistry and specialise in areas such as:

  • synthetic chemistry, where you explore the synthesis of complex molecules used in drugs, explosives, paints and cosmetics
  • computational chemistry, involving the use of advanced theoretical calculations and high-power supercomputers to understand and predict the structures and reactivities of molecules and short-lived intermediate species
  • nanoscience, to explore the processes of self-assembly enabling the controlled arrangement of atoms and molecules and the chemistry at interfaces
  • medicinal chemistry, to explore molecular design and the modification of compound properties to enhance pharmaceutical applications as evaluated through bioassays.

All of these areas involve access to advanced instrumental techniques and the development of skills that employers value.

You will be equipped to pursue a diverse range of career opportunities. These include roles as a chemist, materials scientist, environmental scientist, biochemist, toxicologist or forensic scientist.

Other jobs include scientific journalist, quality assurance manager, pharmaceutical sales representative, patent examiner, teacher, and roles in marketing and conservation.

This major is accredited by the Royal Australian Chemical Institute.

View

Examine the intricate relationship between climate, coastal systems and marine environments to solve complex challenges facing our oceans.

In this major, you'll dive into the scientific study of coastal processes, oceanography, ecology, marine geology and marine conservation. 

You’ll learn to apply a wide range of evidence-based environmental and conservation strategies to protect vital coastal habitats and marine ecosystems across the globe.

Guided by Australia’s leading marine researchers, you’ll gain extensive fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.

Enhance your employability by combining your speciality with a minor in a broad range of complementary fields, including ecology and conversation biology, earth science, genetics, microbiology or computational science.

Demand for highly skilled coastal and marine scientists is on the rise. You’ll find opportunities in various fields including:

  • teaching and universities
  • fisheries laboratories
  • environmental consultancies 
  • marine parks
  • coastal management
  • government departments.

View

As computers become increasingly interconnected and support more services than ever, securing these systems becomes more challenging and more crucial.

By studying cyber security, you'll learn the fundamental processes and practices to protect computing systems from attack, damage or unauthorised access.

You'll study secure programming techniques and ethical hacking to safeguard individuals, businesses and governments against cybercrime, and you'll graduate with highly valued and employable skills.

Career paths can lead to roles such as cyber security analyst, cyber systems engineer or information security officer.

Join a growing industry

  • Cyber security specialist was the #2 emerging job of 2020 (LinkedIn 2020 Emerging Jobs Report).
  • By 2026, Australia will need 18,000 more cyber security workers.
  • Australia’s external spending on cyber security products and services grew by eight per cent in 2018 to $3.9 billion (Australian Cyber Security Growth Network).

View

Our world is recording more data than we have the ability to process, which presents enormous challenges associated with data storage, management and analysis.

You'll learn comprehensive and fundamental techniques for end-to-end processing that transforms data into information, and prepare to become one of the new breed of data science professionals.

This major will prepare you for a career in government departments, consultancy or private sector organisations.

Join a growing industry

  • The rise of big data means data scientists are now some of the most in-demand professionals in the world.
  • Data scientist was the #7 top emerging job of 2020 (LinkedIn 2020 Emerging Jobs Report).

View

Learn scientific techniques to sustainably manage the Earth’s minerals, energy sources or natural resources.

You’ll learn how remote-sensing technologies and geographic information systems (GIS) are used to analyse geological processes and monitor changes in the Earth’s environment.

Dig deeper into our mineral and energy sources by exploring topics such as mineral and rock analysis, mining geology, environmental geology or geochemistry. Develop and apply your knowledge through practical laboratory experience, fieldwork, and specialised seminars.

You may choose to study electives in coastal and ocean science to deepen your understanding of oceanography and help create a sustainable future for marine environments.

You’ll be equipped to pursue a career in the natural resource, energy or environmental sectors. Alternatively, help contribute to new scientific knowledge by progressing into a research-based honours degree.

View

Broaden your understanding of how organisms interact with each other and their environments, and be part of the solution for protecting our natural world.

Ecology and conservation biology are vital for solving the environmental challenges our society is facing today.

You’ll be taught by internationally renowned conservation experts, and can choose to specialise in conservation biology, marine ecology or evolutionary ecology.

Gain real-world experience in solving ecological problems by conducting fieldwork in a range of rainforest, outback and marine environments.

You’ll be equipped to tackle global issues such as biodiversity loss, climate change, diminishing natural resources and the environmental impacts of human activity.

Employment demand has risen strongly over the past 5 years with roles available in government departments and agencies, private industry or environmental organisations.

View

Follow your passion for food to create a rewarding career in one of Australia’s largest industries.

Take a scientific approach to the study of food and its consumption. You'll study all aspects of the food system from farming, processing and distribution, to how food is selected and consumed, and how it affects our health.

Food is one of largest industries in the world and offers a diverse range of career opportunities in the fields of nutrition, food science and technology, education, and research and development.

View

Follow your passion for food to create a rewarding career in one of Australia’s largest industries.

We integrate theory with practice. Learn about the scientific composition of foods and the chemical reactions that take place during processing.

Study key aspects in the development of food products and develop your expertise in food preservation, processing operations, quality assurance and consumer product testing.

You'll then have the opportunity to apply your knowledge and build your industry connections with work placements at leading food manufacturing organisations.

You'll be prepared to work in areas such as product development, quality assurance and food safety, food microbiology, research and development, food standards and policy, or sales and marketing.

View

Genetics is transforming the way we investigate diseases, develop medical treatments, protect endangered species and create food security.

You’ll advance your knowledge in genetic structure, genetic interaction and the genetic basis of traits.

We'll expand your critical thinking and teach you to analyse complex biological data using the latest genetic technologies.

You’ll learn to translate genetic information into meaningful insights that may lead to new discoveries.

Studying genetics will prepare you for a broad range of opportunities across ecology, research, medicine and agriculture.

View

Explore the study of spatial patterns of physical and human phenomena at local, national and global scales.

Blending theory with real-world experience, you’ll learn to apply geographical information science (GIS) software and remote-sensing technologies for data analysis, data modelling and developing map visualisations.

We broaden your critical thinking and teach you how to apply GIS to solve key environmental, societal or planning issues facing today’s modern world.

You’ll be equipped to pursue a broad range of career opportunities, including roles in natural resource management, national parks and wildlife conservation.

View

Machine learning is the study of algorithms that automatically improve performance with experience.

These algorithms allow computers do things like automatically identify and harness useful data to help decision-making, find hidden insights without being explicitly programmed where to look, and predict outcomes of certain policies to help authorities design effective policies.

You'll graduate with skills at the forefront of this massive growth area as society looks for automated and continuous improvements on how to enhance business and our lives through the use of computing systems and data.

These skills can be applied in government departments, consultancy or private sector organisations.

Join a growing industry

  • Artificial intelligence specialist was the #1 emerging job of 2020 (LinkedIn 2020 Emerging Jobs Report).
  • AI could contribute up to $15.7 trillion to the global economy in 2030 (PwC research).
  • New AI technologies will require highly-skilled workers who can develop and maintain complex systems and applications.

View

Apply key principles from ecology, zoology, botany and genetics to examine marine life and investigate their biological relationship to their natural environments.

Guided by Australia’s leading marine researchers, you’ll be exposed to a variety of marine habitats and environmental conditions.

You'll gain extensive fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.

We'll show you how to apply a wide range of evidence-based ecological and environmental strategies to protect and sustainably manage vital marine organisms and ecosystems across the globe.

You'll be prepared for a broad range of career opportunities within research and education, aquaculture, wildlife conservation and ecotourism.

View

Choose from more than 30 different courses in mathematics and statistics to suit your interests and career goals.

This major will challenge and expand your problem-solving, logical thinking and conceptual ability. You'll gain quantitative and analytical skills, along with a foundation of calculus, linear algebra, probability, discrete mathematics, mathematical analysis and modelling.

You’ll develop and apply your knowledge through practical experience, structured tutorials and specialised lectures.

Our comprehensive mathematical training equips you for a broad range of opportunities in banking, finance, insurance, business, engineering, science, information technology and risk management.

Studying mathematics also gives you a strong foundation to continue into a higher degree by research and excel in research positions within universities, government agencies and private companies.

View

Microbiology is at the forefront of protection against infectious diseases.

You’ll study microorganisms, the immune system, microbial virulence, disease states and response to infection.

Learn how vaccines protect animals and humans from infectious diseases. Discover the latest advances in vaccine development from your lecturers who are globally recognised experts.

You’ll focus on immunology, virology, parasitology, environmental microbiology, microbial biotechnology and microbial genomics. Study bacterial, fungal and viral infections.

Apply your knowledge in weekly laboratory practicals. Gain skills in specialist biomedical and molecular techniques used to diagnose and characterise infectious microbes and in the development of new diagnostics. Problem-based scenarios will enhance your analytical, research and communication skills.

The growth in biotechnology, aquaculture and emerging disease threats to plant, animal and human health globally has increased job opportunities for microbiologists. You’ll be equipped for roles in agriculture, environmental, chemical, pharmaceutical, medical, food processing and veterinary companies. Studying microbiology can lead to rewarding career opportunities in specialist areas such as forensics, biosecurity and quarantine in government agencies.

Or kickstart your career in research by progressing into a research-based honours degree.

View

Dive deep into the complexities of the human immune system to transform the way we treat and prevent disease.

You’ll gain a comprehensive understanding of how our immune systems can be harnessed to prevent, treat and cure diseases.

Investigate the role of microorganisms such as bacteria, viruses and parasites in disease; the molecular basis of immune recognition; and the regulation of immune response in a range of infectious diseases.

Learn immunological techniques for developing vaccines and immunotherapies, as well as practical applications in biotechnology, microbiology, genetics, and cell and molecular biology.

You’ll be taught by leading researchers working in laboratories where current medical breakthroughs are taking place. You'll apply your theoretical knowledge and build your technical skills through practical laboratory sessions and small group tutorials.

You’ll be equipped for a range of opportunities in hospitals, research institutions, biotechnology firms, pharmaceutical companies or universities.

Studying immunity and infectious disease will prepare you for further study in the field of medicine or to progress into a research-based honours program.

View

Deepen your understanding of how and why things work.

Led by internationally recognised researchers, you’ll study the laws of physics and explore how these principles are applied in our everyday life – from understanding the nature of time to developing new technologies.

You'll be able to combine your scientific and mathematical knowledge with skills in computer programming and statistics to understand theories relating to quantum mechanics, biophotonics, astronomy or astrophysics. Or apply your knowledge to develop advanced materials, electronic and optical devices.

Your high-level technical, analytical and problem-solving skills will lead you to a wide range of rewarding opportunities in sectors such as education, finance, engineering, computing and management.

Alternatively, continue into a higher degree by research to uncover new scientific knowledge or apply your findings to develop new devices, products or processes.

View

Help to solve 2 of the biggest problems facing humans today: food security and our dependency on fossil fuels.

In this major, you’ll learn and apply the science behind breeding high-yielding, pest-resistant crops to help farmers increase their productivity.

You'll study ecology, plant pathology, plant physiology and plant biotechnology, and apply your knowledge to use plant-based sources to develop biofuels, medicines or healthier food products.

Studying plant science can lead to rewarding career opportunities as a researcher, consultant or teacher with multinational companies, universities or government departments.

View

Programming languages are the building blocks of software in computer science.

Covering the different paradigms of programming, this major focuses on the design of computer languages that can be easily used to create programs.

You will study the craft and science of programming, and graduate with the skills to enable the construction of effective programming languages and reliable software.

Programming opens doors beyond tech

  • Programmers write software that can be used to create websites, build computer networks, help doctors treat patients, or even drive a car.
  • Half of all programming roles are in finance, manufacturing, health care, and other sectors outside of the technology industry.
  • Coding skills can take you places: data analytics, scientists, engineers and designers all use coding.

View

Study how people behave, think and feel.

In this major, you'll explore topics like brain function, memory, conscious experience, lifespan development and social behaviour, together with the full spectrum of functional and dysfunctional behaviours.

Graduates undertake careers in human resources, mental health services, youth and child support work, or fields a diverse as marketing, aged care and corrective services.

View

Make a positive difference to people's lives by learning how to measure, plan, manage and evaluate health programs and services to prevent illness and promote good health in communities.

Public health is founded on a multidisciplinary understanding of health that allows you to explore and examine the basis of disease and wellbeing by considering human behaviour, physical environments, socio-economic and cultural factors, and systems of healthcare management.

The Public Health major provides a broad overview of public health and the critical issues it confronts. To establish core understanding of this field, you will examine the foundational disciplines of public health, including epidemiology, biostatistics, health systems, environmental health and social sciences.

Studying public health can lead to a variety of roles within public and global health, health research or public health policy.

View

Computers hold the key for fast and efficient analysis of complex scientific problems.

However, computers are digital systems, requiring discrete inputs and outputs, while mathematical analysis often relies on continuous functions. Therefore, careful approximations are necessary to enable computers to analyse complex mathematical functions.

You will study algorithms for mathematical analysis and graduate with skills used in various scientific endeavours, including in hospitals and university medical research and big pharmaceutical and petrochemical companies across the public and private sectors.

Join a growing industry

  • Help solve the complex scientific problems of the future using mathematical analysis.
  • The digital technology sector is one of the fastest growing parts of Australia’s economy.
  • Data engineer was the #8 emerging job of 2020 (LinkedIn 2020 Emerging Jobs Report).

View

Apply the tools of modern statistics to inform data-driven decision-making and solve real-world problems.

In this major, we combine theory with practical experience to expand your critical thinking, enhance your analytical capabilities and develop your technical skills.

You'll discover how statistics are used to help solve real-world problems, such as improving medical treatments through data-driven experimental design, or using meteorological and spatial data to assess drought conditions in local communities.

You'll learn and apply statistical techniques to analyse and interpret complex data, and transform it into meaningful insights.

Statisticians and data analysts are in high demand across business, industry, research and government to forecast, analyse and solve a variety of complex issues.

View

Learn how animals relate and interact with their physical and biological environments.

Through this major, you’ll investigate animal morphology, development and genetics, behaviour, ecology, physiology, biochemistry and molecular biology.

We'll expand your knowledge of climate change biology, wildlife and conservation biology, entomology, environmental physiology, marine biology, fisheries biology and aquaculture, terrestrial ecology, molecular ecology and mathematical applications in biology.

You can combine your study of animals with biostatistics, ecology, evolution, genetics and insect science, and gain practical experience through field courses offered in the Australian outback, rainforests, Stradbroke Island and the Great Barrier Reef.

Zoology offers a large number of career options, ranging from field-based conservation work to biomedical research with medical laboratories and education institutions.

Alternatively, kickstart your career in research by progressing into a higher degree by research.

View

Minors

Tailor your studies to suit your goals. This program offers these options:

Study applied mathematics and learn how advanced mathematical methods are used to develop practical solutions in a variety of real-world contexts.

Learn advanced mathematical techniques to solve problems in a logical, analytical and creative manner.

Build your foundational knowledge in core topics such as calculus and linear algebra, multivariate calculus and ordinary differential equations, and applied mathematical analysis.

You'll gain practical mathematical skills that can be applied to any field.

You'll then have the opportunity to apply your expertise in areas of interest such as natural resources mathematics, or operations research and mathematical planning.

View

Examine key developments in human evolution, civilisation and our relationship with the world around us.

In this minor, you’ll develop and apply your knowledge through a combination of theory-based and practical learning.

Combine the core archaeology course with electives and expand your knowledge of past human-animal relationships, our long-term history of plant use, or managing our cultural heritage.

Future work includes positions in museums, consultancies, government departments, cultural centres, law enforcement, and educational and research institutions.

View

Deepen your understanding of the universe and our place in it.

Led by internationally recognised researchers, you’ll explore theories behind the creation of the Universe to understand the origin and evolution of galaxies, stars and planets.

Examine the fundamental laws of physics behind how particles and radiation were created, how galaxies and planetary systems form, and how environments for life develop.

You’ll study the physical processes behind the structure of the Milky Way, star formation, stellar atmospheres, gravitational waves, the creation of matter and the cosmic microwave background.

Learn to build computer simulations of the Universe to investigate some of the big questions in modern astrophysics and cosmology, including:

  • What are dark energy and dark matter?
  • How did the Universe begin and how did it end?
  • Where did the contents of the Universe come from?
  • How and when do galaxies form?

You’ll have access to state-of-the-art computing facilities as well as specialised tools and instruments used in astrophysics research.

A minor in astrophysics will prepare you for a research career in astrophysics or other scientific fields. You’ll be well placed to continue into a research-based honours degree.

Studying physics courses can also lead to working as a data scientist, banking or financial analyst, management consultant, or careers in the space industry, medical physics, mining or the environment.

View

Study the molecular events controlling the growth and development of cells and organisms in all living things.

In this minor, you'll develop a comprehensive understanding of the chemical basis of life and its relevance to research and development in areas like medicine, proteomics, genomics, synthetic biology, biotechnology and genetic engineering.

Learn how molecular events can go wrong in certain diseased states and how this contributes to the development of new drugs.

You’ll develop and apply your knowledge through practical laboratory experience, structured tutorials and specialised seminars.

Career paths lead to some the most exciting and challenging roles in science and medicine, from laboratories, hospitals or government agencies to specific positions in research.

View

More industries are embracing genetic technologies. Study bioinformatics and help shape the way we manage our health and environment.

Gain specialised knowledge in statistics, data management, computer programming, genomics and molecular biology.

You’ll apply your scientific expertise and technical skills to translate complex biological data into meaningful information. Your insights may lead to new innovations or discoveries.

Studying bioinformatics will prepare you for a wide range of opportunities in scientific research organisations, universities, government departments and within the biotechnology or pharmaceutical industries.

View

Be at the forefront of new biological knowledge that revolutionises the way we cure disease, develop new technologies or create new renewable energy sources.

Biophysics sits at the crossroads of biology, physics and chemistry. You’ll apply core principles from physics and chemistry to deepen your understanding of how complex biological systems work.

Study computer modelling techniques and key methods of mathematical analysis to examine the relationships between the physical properties and how molecules, cells and core systems within the human body function.

Deepen your understanding of how nerve cells communicate, and use scientific techniques to examine the structures of proteins, viruses, and other complex molecules.

Studying biophysics gives you interdisciplinary training, meaning you can adapt to a variety of working environments from universities and research centres to industry and government.

View

Help transform the way we detect disease, develop new treatments or sustainably feed a growing world population.

Investigate how cellular, genetic and evolutionary processes affect everyday life.

Examine key concepts and techniques to understand genetic information, and investigate cellular processes and cell development in a range of organisms. You’ll apply microscopic techniques to observe how cells function in healthy and diseased states.

The growing availability of biological data is allowing unprecedented discoveries in areas as diverse as human medicine, agriculture, conservation biology and biotechnology. You'll learn from leading scientists who have contributed to breakthroughs across biotechnology, and animal, plant and medical sciences.

Studying a minor cell biology will add depth to your scientific knowledge and enhance your employability for a wide range of opportunities within research, biotechnology, agriculture, medicine, conservation or government agencies.

View

Develop specialist knowledge at the interface of chemistry and biology.

Gain chemical knowledge about cellular processes and biomolecular interactions, and explore the chemical, computational and imaging techniques used to analyse them.

You'll apply the principles of inorganic and organic chemistry to investigate the nature of chemical reactions in biological systems at the molecular level.

Studying chemical biology will complement courses in biochemistry and molecular biology, genetics, biological and biomedical sciences.

You'll be well-placed to progress into a research-based honours degree.

View

Chemistry is an enabling science that provides a foundation for fields such as education, technology and the environment.

You’ll learn the fundamentals of general, physical, organic and inorganic chemistry and specialise in areas such as:

  • synthetic chemistry, where you explore the synthesis of complex molecules used in drugs, explosives, paints and cosmetics
  • computational chemistry, involving the use of advanced theoretical calculations and high-power supercomputers to understand and predict the structures and reactivities of molecules and short-lived intermediate species
  • nanoscience, to explore the processes of self-assembly enabling the controlled arrangement of atoms and molecules and the chemistry at interfaces
  • medicinal chemistry, to explore molecular design and the modification of compound properties to enhance pharmaceutical applications as evaluated through bioassays.

All of these areas involve access to advanced instrumental techniques and the development of skills that employers value.

View

Examine the intricate relationship between climate, coastal systems and marine environments to solve complex challenges facing our oceans.

In this minor, you'll dive into the scientific study of coastal processes, oceanography, ecology, marine geology, and marine conservation.

You’ll learn to apply a wide range of evidence-based environmental and conservation strategies to protect vital coastal habitats and marine ecosystems across the globe.

Guided by Australia’s leading marine researchers, you’ll gain fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.

Studying a minor in coastal and ocean science will add depth to broad range of complementary fields including ecology and conversation biology, earth science or zoology.

You’ll be equipped for a broad range of opportunities in areas such as:

  • natural resource management
  • conservation
  • environmental management
  • education
  • government departments.

View

Apply your technical skills and mathematical knowledge to translate complex data into meaningful insights that help shape our future.

Recent advances in technology give scientists the ability to collect and process more data than ever before.

Computational science combines fundamental principles from computer science, mathematics and statistics to solve scientific problems across any specialist field.

Develop your skills in computational thinking and apply computational problem-solving strategies to design algorithms for collecting, processing and analysing vast amounts of data from various sources.

Apply your programming skills to construct large-scale mathematical models and simulations to analyse and interpret real-world data and generate meaningful insights.

You’ll learn to create a range of data visualisations and graphics to communicate your findings to scientific and non-scientific audiences.

Skills in computational science are essential for all scientific disciplines and any career where computational techniques are required for problem-solving, forecasting, data analysis or data visualisation.

View

Be at the forefront of advances in modern medicine. Study developmental biology and learn how organisms are formed from a single cell.

Understanding human and animal development is fundamental to medicine and biomedicine.

State-of-the-art medical therapeutic strategies are built on innovative discoveries from developmental biology, including stem cells, cell engineering, artificial organs, 3D printing and tissue regeneration.

Developmental biology is key to understanding health and disease. It consolidates knowledge from anatomy, physiology, genetics, molecular biology and pharmacology to provide students with an integrated understanding of human development.

Learn from leading researchers and apply your theoretical knowledge in the laboratories where medical breakthroughs are taking place.

You'll be prepared for a range of career opportunities within health, science, research or academia. You’ll have the specialist knowledge and skills required to progress into further study in the field medicine or a research-based honours program.

View

Learn scientific techniques to sustainably manage the Earth’s minerals, energy sources or natural resources.

You’ll learn how remote-sensing technologies and geographic information systems (GIS) are used to analyse geological processes and monitor changes in the Earth’s environment.

Dig deeper into our mineral and energy sources by exploring topics such as mineral and rock analysis, sedimentology magmas and deformed rocks. Develop and apply your knowledge through practical laboratory experience, fieldwork, and specialised seminars.

You may choose to combine your minor with a courses in coastal and ocean science or marine biology to deepen your understanding of oceanography and help create a sustainable future for marine environments.

You’ll be equipped to pursue a career in the natural resource, energy or environmental sectors. Alternatively, help contribute to new scientific knowledge by progressing into a research-based honours degree.

View

Broaden your understanding of how organisms interact with each other and their environments, and be part of the solution for protecting our natural world.

Ecology and conservation biology are vital for solving the environmental challenges our society is facing today.

You’ll be taught by internationally renowned conservation experts and can choose to specialise in conservation biology, marine ecology or evolutionary ecology.

Gain real-world experience in solving ecological problems by conducting fieldwork in a range of rainforest, outback and marine environments.

You’ll be equipped to tackle global issues such as biodiversity loss, climate change, diminishing natural resources and the environmental impacts of human activity.

Employment demand has risen strongly over the past 5 years with roles available in government departments and agencies, private industry and environmental organisations.

View

Help protect our natural world to enhance the quality of life for humans, animals and plants.

Insects have an enormous impact on the environment, human health and world economies. They play a significant role in spreading disease and reducing global food shortages, and are vital indicators of environmental change.

Examine how insects interact with and adapt to their environments, and understand their vital role within ecosystems. You’ll combine theory and practice to explore topics relating to pest management, insect physiology, insect identification and taxonomy.

Learn from leading researchers who are actively involved with a wide variety of projects. Apply your knowledge to understand the impacts of climate change, inform conservation strategies, or apply eco-friendly pest management strategies to protect crops and livestock.

Alternatively, kickstart your career in research by progressing into a research-based honours degree.

View

Genetics is transforming the way we investigate diseases, develop medical treatments, protect endangered species and create food security.

You’ll advance your knowledge in genetic structure, genetic interaction and the genetic basis of traits.

We'll expand your critical thinking and teach you to analyse complex biological data using the latest genetic technologies.

You’ll learn to translate genetic information into meaningful insights that may lead to new discoveries.

Studying genetics will prepare you for a broad range of opportunities across ecology, research, medicine and agriculture.

View

Explore the study of spatial patterns of physical and human phenomena at local, national and global scales.

Blending theory with real-world experience, you’ll learn to apply geographical information science (GIS) software and remote-sensing technologies for data analysis, data modelling and developing map visualisations.

We broaden your critical-thinking and teach you how to apply GIS to solve key environmental, societal or planning issues facing today’s modern world.

You’ll be equipped to pursue a broad range of career opportunities, including roles in natural resource management, national parks and wildlife conservation.

View

Demystify the complexities of the human body and contribute to enhancing human health.

Having a holistic understanding of how the human body works is fundamental for detecting disease and developing new or improved treatments.

Study a minor in human anatomy to acquire in-depth knowledge of cell, tissue and organ systems within the human body. You’ll gain practical skills in dissection and examine prosected cadavers to deepen your knowledge of gross human anatomy.

Apply your anatomical data-analysis skills to investigate how systems contribute to human growth and development, as well as how they're linked to diseases and disorders.

Strengthen your knowledge of the complex relationship between the body, mind and disease by combining your Human Anatomy minor with related courses in human physiology, neuroscience or pharmacology.

Knowledge in human anatomy underpins a wide range of careers opportunities in the health sector, including those with a biomedical science focus.

You’ll be equipped with the anatomical knowledge required to apply for further study in the field of medicine or allied health. Alternatively, kickstart your career in research by progressing into a research-based honours program.

View

Deepen your understanding of the human body to lead positive change in human health.

Examine how cell, tissue and organ systems function within the human body.

Learn the vital roles played by our brain, nerves and hormones in controlling cardiovascular, respiratory, reproductive and metabolic processes important to our survival.

Apply scientific methods to investigate how the failure of these systems can result in disease or disorders.

Study physiological functions at a molecular and cellular level to examine how the body’s core processes are altered in diseased states.

Develop a holistic understanding of the complex links between the body, mind and disease by combining your Human Physiology minor with related courses in human anatomy, neuroscience, pharmacology, or food science and nutrition.

In-depth knowledge of human physiology is essential if you are considering further study in the field of medicine, biomedical science or allied health. It can also lead to a range of career opportunities across the health, science or pharmaceutical sectors.

View

Dive deep into the complexities of the human immune system to transform the way we treat and prevent disease.

Study immunology to gain a comprehensive understanding of the human immune system and how it can be used to prevent, treat and cure diseases such as cancer.

You’ll investigate the role of microorganisms in disease, the molecular basis of immune recognition, and the regulation of immune response in a range of infectious diseases.

Learn immunological techniques for developing vaccines and immunotherapies as well as practical applications in biotechnology, microbiology, genetics, and cell and molecular biology.

You’ll be taught by leading researchers who are working in the laboratories where current medical breakthroughs are taking place.

You’ll be equipped for a range of opportunities in hospitals, research institutions, biotechnology firms, pharmaceutical companies or universities.

This minor will prepare you for further study in the field of medicine or to continue onto a research-based honours program.

View

Apply key principles from ecology, zoology, botany and genetics to examine marine life and investigate their biological relationship to their natural environments.

Guided by Australia’s leading marine researchers, you’ll be exposed to a variety of marine habitats and environmental conditions.

You'll gain extensive fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.

We'll show you how to apply a wide range of evidence-based ecological and environmental strategies to protect and sustainably manage vital marine organisms and ecosystems across the globe.

You'll be prepared for a broad range of career opportunities within research and education, aquaculture, wildlife conservation and ecotourism.

View

Challenge and expand your problem-solving, logical thinking and conceptual ability

You'll gain quantitative and analytical skills, along with a strong foundation of knowledge across calculus, linear algebra, discrete mathematics, mathematical analysis and number theory.

Our mathematical training equips you for a broad range of opportunities in banking, finance, insurance, business, engineering, science, information technology and risk management.

Studying mathematics also equips you to continue into a higher degree by research and excel in research positions within universities, government agencies and private companies.

View

Microbiology is at the forefront of protection against infectious diseases.

In this minor, you'll study the diversity of microorganisms, the immune system, microbial virulence, disease states and the ways organisms respond to infection.

You'll learn how vaccines protect animals and humans from infectious diseases, and discover the latest advances in vaccine development from lecturers who are globally recognised experts.

Focusing on the key areas of immunology, virology, parasitology, environmental microbiology, microbial biotechnology and microbial genomics, you'll study bacterial, fungal and viral infections and apply your knowledge in weekly laboratory practicals.

You'll confidently use the specialist biomedical and molecular techniques required to diagnose and characterise infectious microbes and to develop new diagnostics. Problem-based scenarios will enhance your analytical, research and communication skills.

This minor will add depth to your biological sciences knowledge and equip you with essential technical skills to enhance your employability or prepare you for a career in research.

View

Reimagine how we develop new treatments and drive technological advances that shape our world’s future.

Study neuroscience to deepen your understanding of how the human brain and nervous system function.

Examine the complexities of the brain and nervous system to explore how neural systems develop, process sensory information, control our movement, form memories, react to stress, respond to disease and store vital information about the world around us.

Combine your minor in neuroscience with courses across anatomy, physiology, pharmacology, molecular biology and cellular biology to prepare yourself for further study in the field of medicine, or to continue into a research-based honours degree in science or biomedical science.

You may choose to apply your neuroscience knowledge to help power artificial intelligence by studying courses across mathematics, statistics, computer science or physics.

Studying neuroscience will equip you to enter the workforce in fields as diverse as business, biotechnology, health, science or the pharmaceutical industry.

View

Revolutionise the way we use existing drugs and develop new medicines to help prevent and combat disease.

Study pharmacology to learn the science behind how drugs work to treat and cure diseases.

You’ll gain comprehensive knowledge on how drugs work in the human body at the molecular cellular and whole-body level, and discover why many drugs do not work in every patient.

You'll learn how active chemical agents in medicines affect our cells, tissue or organs to examine their benefits, side effects and interactions on human health. And you'll be taught the latest techniques to test drug effects and how to evaluate their benefits and risks in treating human diseases.

Gain vital research experience while you study by contributing to projects that could lead to new medical breakthroughs.

A minor in pharmacology will prepare you for employment and research opportunities within healthcare organisations, medical research institutions, pharmaceutical or biotechnology companies, universities and hospitals.

View

Deepen your understanding of how and why things work.

Led by internationally recognised researchers, you’ll study the laws of physics and explore how these principles are applied in our everyday life – from understanding the nature of time to developing new technologies.

You'll be able to combine your scientific and mathematical knowledge with skills in computer programming and statistics to understand theories relating to quantum mechanics, biophotonics, astronomy or astrophysics. Or apply your knowledge to develop advanced materials, electronic and optical devices.

Your high-level technical, analytical and problem-solving skills will lead you to a wide range of rewarding opportunities in sectors such as education, finance, engineering, computing and management.

Alternatively, continue into a higher degree by research to uncover new scientific knowledge or apply your findings to develop new devices, products or processes.

View

Help to solve 2 of the biggest problems facing humans today: food security and our dependency on fossil fuels.

In this minor, you’ll learn and apply the science behind breeding high-yielding, pest-resistant crops to help farmers increase their productivity.

You'll study ecology, plant pathology, plant physiology and plant biotechnology, and apply your knowledge to use plant-based sources to develop biofuels, medicines or healthier food products.

Studying plant science can lead to rewarding career opportunities as a researcher, consultant or teacher with multinational companies, universities or government departments.

View

Study how people behave, think and feel.

In this minor, you'll explore topics like brain function, memory, conscious experience, lifespan development and social behaviour, together with the full spectrum of functional and dysfunctional behaviours.

Graduates undertake careers in human resources, mental health services, youth and child support work, or fields a diverse as marketing, aged care and corrective services.

View

Apply the tools of modern statistics to inform data-driven decision making and solve real-world problems.

In this minor, we combine theory with practical experience to expand your critical thinking, enhance your analytical capabilities and develop your technical skills.

You'll discover how statistics are used to help solve real-world problems, such as improving medical treatments through data-driven experimental design, or using meteorological and spatial data to assess drought conditions in local communities.

You'll learn and apply statistical techniques to analyse and interpret complex data, and transform it into meaningful insights.

Statisticians and data analysts are in high demand across business, industry, research and government to forecast, analyse and solve a variety of complex issues.

View

Learn how animals relate and interact with their physical and biological environments.

Through this minor, you’ll investigate animal morphology, development and genetics, behaviour, ecology, physiology, biochemistry and molecular biology.

We'll expand your knowledge of climate change biology, wildlife and conservation biology, entomology, environmental physiology, marine biology, fisheries biology and aquaculture, terrestrial ecology, molecular ecology and mathematical applications in biology.

You can combine your study of animals with biostatistics, ecology, evolution, genetics and insect science, and gain practical experience through field courses offered in the Australian outback, rainforests, Stradbroke Island and the Great Barrier Reef.

Zoology offers a large number of career options, ranging from field-based conservation work to biomedical research with medical laboratories and education institutions.

Alternatively, kickstart your career in research by progressing into a higher degree by research.

View

Fees and Scholarships

Indicative annual fee

Approximate yearly cost of tuition (16 units). Your fees will vary according to your selected courses and study load. Fees are reviewed each year and may increase.

$7,889

2024

$7,889

2024

Learn more about undergraduate fees

Approximate yearly cost of tuition (16 units). Your fees will vary according to your study load. Fees are reviewed each year and may increase.

AUD $50,440

2024

AUD $50,440

2024

Learn more about undergraduate fees

Government assistance

Financial aid

As an international student, you might be eligible for financial aid – either from your home country, or from the Australian Government.

Learn more about financial aid

HECS-HELP

Domestic places in the Bachelors of Computer Science / Science are Commonwealth Supported. This means the cost of your education is shared between you and the Australian Government.

Instead of tuition fees, Commonwealth Supported students pay what are called student contribution amounts.

HECS-HELP is an Australian Government loan scheme to assist eligible students with the cost of their student contribution amounts.

Learn more about HECS-HELP

Centrelink support

Scholarships

You may be eligible for more than 100 scholarships, including:

How to apply

Applying online

If your senior schooling is from outside Australia, you can submit your application to UQ. Or, if you prefer, you can use an approved UQ agent in your country.

The program code for the Bachelors of Computer Science / Science is 2484.

Find out more about applying for undergraduate study

If your senior schooling is from Australia

Submit your application to the Queensland Tertiary Admissions Centre if you're an international student who is currently studying:

  • Australian Year 12 (in Australia or another country), or
  • the International Baccalaureate in Australia.

The QTAC code for the Bachelors of Computer Science / Science is 733601.

Find out more about applying for undergraduate study

Important dates

If you’re studying Year 12 in Australiago to the QTAC website to check the closing date for this program. 

If you’re applying to UQ, the closing date for this program is: 

  • To commence study in semester 2 - May 31 of the year of commencement.
  • To commence study in semester 1 - November 30 of the previous year.

To learn more about UQ dates, including semester start dates, view the Academic Calendar

Important dates

Admissions schemes

Applying to university can be both exciting and daunting, which is why we’ve tried to make the process as simple as we can.

We have several schemes in place to improve your chances of getting a place at UQ.

Learn more about admission schemes

Pathway options

A rank or score doesn’t determine your potential.

If you're not offered a place in your first-choice program – or if you don't meet the entry requirements – you still have a number of options.

Learn more about pathway options

Aboriginal and Torres Strait Islander applicants

For support with applying – or if you have any questions about university life – get in touch with our Aboriginal and Torres Strait Islander Studies Unit.

Contact the ATSIS Unit

Explore other programs

Engineering (Honours)

Bachelor of Engineering (Honours)

St Lucia
4 Years full-time4 Years full-time
(or part time equivalent)
Information Technology

Bachelor of Information Technology

St Lucia
3 Years full-time3 Years full-time
(or part time equivalent)
Design

Bachelor of Design

St Lucia
3 Years full-time3 Years full-time
(or part time equivalent)
Computer Science

Bachelor of Computer Science

St Lucia
3 Years full-time3 Years full-time
(or part time equivalent)

Express yourself. And your interest.

They say choosing a degree is hard, which is why we've made it easy. Register your interest and we'll send you everything you need to know about applying to UQ.

Sign up for updates

Select your country and then enter your mobile phone number.

We will use your information to keep you informed about UQ programs, news, events and scholarships. By submitting this form, you consent to the terms of UQ's Marketing consent and privacy notice.