Bachelors of Science / Education (Secondary)
Overview
Combine your passion for science with the skills, knowledge and practical experiences required to be a secondary school teacher.
This four-year dual program allows you to combine your passion for science with the qualifications to become a secondary teacher. You'll benefit from a thorough preparation for your teaching areas, combined with – and informed by – professional studies in the area of education.
The Bachelor of Science provides the content knowledge for two teaching areas whilst the Bachelor of Education (Secondary) provides the necessary skills, knowledge and practical experiences required for teacher registration and employment.
The education component offers school-based learning and draws on the latest research into effective teaching methods, ensuring you graduate well-prepared for secondary school teaching, or training in business or industry. It's a challenging and rewarding career, with secondary school teachers in demand worldwide.
You'll explore and challenge your thinking in the science component, which offers one of the broadest selections of science disciplines in Australia. You'll develop your interdisciplinary scientific knowledge and practical skills, while pursuing studies that suit your interests and ambitions, with the freedom to mix and match course combinations.
Program highlights
- Graduate with two degrees and become an expert in two or more science teaching areas
- Gain early experience in classrooms with placements available from your first year
- Graduate with high-level teaching ability and a wide range of scientific skills, ready to excel in a challenging and rewarding profession.
Majors
Tailor your studies to suit your goals. This program offers these options:
- Applied Mathematics
- Applied Mathematics
- Astrophysics
- Biochemistry and Molecular Biology
How you'll learn
Your learning experiences are designed to best suit the learning outcomes of the courses you choose.
- Lectures
- Tutorials
- Work placements
- Laboratory work
- Fieldwork
- Workshops
Placements and work experience
Students undertaking a Bachelor of Science / Bachelor of Education(Secondary) dual program must complete 90 days of supervised and assessed professional experience comprising of: 5 days of school experience/observation and 85 days of supervised and assessed professional experience throughout the program.
Every effort is made to place students within a reasonable distance of their home base but they can be expected to travel up to 90 minutes due to public transport connections and incur costs associated with travel and possible lost income over this period. Students are generally placed at Ipswich, Brisbane, and southeast Queensland and are encouraged to explore the option of a rural placement. Financial assistance may be available to assist with travel and accommodation costs for rural placements.Students are required to have a current Blue Card (Working with Children Check) before commencing practicum. Students can apply for a Blue Card through the School of Education and should do so three months before their practicum is due to commence. The Professional Experience Handbook provides information about practicum and school experience requirements and is available from the School of Education.
What you'll study
At UQ, degrees are called 'programs' and subjects are called 'courses'.
Career possibilities
Our programs prepare you for your first job and beyond. Depending on which major you choose, here are some of the careers you could be on your way to:
- Secondary school teacher
- School laboratory technician
- School curriculum adviser
- Head of curriculum
- Science technician
- Middle school teacher
Graduate salary
Teacher education (undergraduate)
compared.edu.au
Next steps after graduation
You’ll be eligible to apply for registration as a teacher with the Queensland College of Teachers, and to work as a school teacher in state and independent schools in Australia and worldwide. 96% of our graduates are offered teaching jobs.
Further study and experience can lead to roles as a head of department, principal, guidance officer, learning support teacher or student adviser.
Other graduates choose to work with non-school-based education providers (such as tutoring companies), government agencies or education advocacy organisations.
Professional memberships
When you graduate, you may be eligible for memberships with the following professional organisations. Contact the organisation to find out how to become a member.
- Queensland College of Teachers
Professional registration
When you graduate, you may be eligible for registration with the following professional organisations. Contact the organisation to find out how to register.
- Queensland College Of Teachers
Program accreditation
The Bachelors of Science / Education (Secondary) is accredited by:
- Australian Institute For Teaching And School Leadership
Events
See all events7 April
International Baccalaureate Research Skills Program
30 June
Queensland Biology Winter School, Year 11
Stories
See all storiesUni life
Camila’s experience as a summer research scholar
5-minute read
UQ people
Meet the expert: exploring sports nutrition with Dr Brooke Devlin
4-minute read
Stories
See all storiesUni life
Camila’s experience as a summer research scholar
5-minute read
UQ people
Meet the expert: exploring sports nutrition with Dr Brooke Devlin
4-minute read
Entry requirements
Prerequisites
- General English subject (Units 3 & 4, C);
- Mathematical Methods (Units 3 & 4, C);
- and one of Biology, Chemistry, Earth and Environmental Science, or Physics (Units 3 & 4, C).
All applicants to education programs in Australia must complete non-academic entry criteria. For further information please QTAC's Initial Teacher Education (ITE) advice page.
Prerequisites
- General English subject (Units 3 & 4, C);
- Mathematical Methods (Units 3 & 4, C);
- and one of Biology, Chemistry, Earth and Environmental Science, or Physics (Units 3 & 4, C).
All applicants to education programs in Australia must complete non-academic entry criteria. For further information please QTAC's Initial Teacher Education (ITE) advice page.
Minimum entry score
To be considered for this program, you must meet the minimum entry score for the Bachelor of Science.
Entry score threshold
ATAR / Rank | IB |
---|---|
80 | 28.75 |
These are the lowest adjusted scores we made an offer to in Semester 1, 2024. Entry scores are based on the most recent Semester 1 intake and are updated in April each year. Meeting the entry score threshold doesn't guarantee admission.
Guarantee your place at UQ: If you meet our guaranteed minimum ATAR you could secure an offer for your preferred program.
English language requirements
IELTS score of 7.5 overall; speaking 8; listening 8, reading 7, writing 7. For other English Language Proficiency Tests and Scores approved for UQ.
TOEFL iBT (Paper Edition), PTE Academic, BE, CES, and OET are not accepted.
There are other ways to meet the English language requirements. For some programs, additional conditions apply.
Inherent requirements
To complete this degree, you have to meet its inherent requirements by demonstrating essential skills and attributes. Read the inherent requirements before you apply.
Student visas
International students who are accepted into full-time study in the Bachelors of Science / Education (Secondary) are eligible to apply for an Australian student visa (subclass 500).
There are a number of requirements you must satisfy before a visa is granted, including the Genuine Student (GS) requirement.
Entry score range
This table shows the range of entry scores for recent secondary students offered a place in the B Science/BEduc(Secondary) for Semester 1, 2024
Without adjustments | With adjustments | |
---|---|---|
Highest | 99.55 | 99.95 |
Median | 89.15 | 91.15 |
Lowest | 80.65 | 81.9 |
Who you'll study with
Here's a snapshot of our student intake for this program in Semester 1, 2024:
Applicant background | Number of students | Percentage of all students |
---|---|---|
(A) Higher education study | 12 | 30% |
(B) Vocational Education and Training (VET) study | 0 | 0% |
(C) Work and life experience | 0 | 0% |
(D) Recent secondary education | ||
| 0 | 0% |
| 23 | 57.5% |
| 0 | 0% |
International students | 5 | 12.5% |
Total | 40 | 100% |
"<5" — The number of students is less than 5.
N/A — Students not accepted in this category.
N/P — Not published. The number is hidden to protect the privacy of students in other cells.
Need help meeting the entry requirements?
Additional application information
All applicants to education programs in Australia must complete non-academic entry criteria (online questionnaire and personal statements). For further information please see QTAC's Initial Teacher Education (ITE) advice page. Please refer to the School of Education for further information on entry requirements and becoming a teacher.
All students are required to successfully meet the Literacy and Numeracy Test for Initial Teacher Education (LANTITE) standards prior to graduation. Please contact the School of Education for further details (education@uq.edu.au) or visit the School of Education office. For more information on the test including sample tests, indicative fees, testing institutions and registration information, please visit the School of Education LANTITE website and the Australian Council for Educational Research (ACER) website.
Additional application information
As part of the Australian Institute for Teaching and Leadership (AITSL) revised Standards and Procedures (2015), applicants to initial teacher education courses (pre-service teachers) must satisfy both academic and non-academic entry criteria for selection to the course.
All students are required to successfully meet the Literacy and Numeracy Test for Initial Teacher Education (LANTITE) standards prior to graduation. Please contact the School of Education for further details (education@uq.edu.au) or visit the School of Education office. For more information on the test including sample tests, indicative fees, testing institutions and registration information, please visit the School of Education LANTITE website and the Australian Council for Educational Research (ACER) website.
Majors and minors
Majors
Tailor your studies to suit your goals. This program offers these options:
Study applied mathematics and learn how advanced mathematical methods are used to develop practical solutions in a variety of real-world contexts.
Build your foundational knowledge in core topics such as applied mathematical analysis, mathematical modelling and the numerical methods used in computer programming.
You'll develop your critical thinking skills and learn advanced mathematical techniques for approaching problems in a logical, analytical and creative manner.
You'll then have the opportunity to apply your expertise in areas of interest such as financial mathematics, natural resources and environmental modelling or biological science.
With practical experience gained through work placements, you'll be prepared for a diverse range of career opportunities in sectors such as education, financial services, engineering, technology and sciences.
You’ll study the molecules, systems and chemical processes that make life possible.
- Discover what drives current research into vaccines and causes of life-threatening diseases.
- Explore the latest applications in eco-friendly industrial processes, agriculture and sustainable food production.
- Visualise the future in synthetic biology, biotechnology, proteomics, genomics, bioinformatics, genetic engineering and drug design.
Your award-winning lecturers are experts who will help you understand and use the latest scientific and industry tools through extensive practical laboratory experience, structured tutorials and specialised seminars.
Career paths include some of the most exciting and challenging roles in agriculture, health, biotechnology and environmental sectors. You’ll find employment as a research biochemist or molecular biologist in pharmaceutical development laboratories in universities, research institutes and companies trying to understand cellular processes, investigating diseases affecting animals and plants, or searching for new biological tools.
Study molecular biology, genetics, physiology, anatomy and immunology – then apply your knowledge in laboratories where medical breakthroughs are taking place.
You’ll put theory into practice and work alongside researchers and healthcare professionals to conduct medical research and test the effectiveness of treatments.
Studying biomedical science can prepare you for a research-based honours program, or employment within the education, the healthcare industry, government, not-for-profit organisations or universities.
Study cell biology to deepen your understanding of how cellular, genetic, and evolutionary processes affect everyday life.
Examine key concepts and techniques to understand genetic information and investigate cellular processes and cell development in a range of organisms. You’ll apply microscopic techniques to observe how cells function in healthy and diseased states.
The growing availability of biological data is allowing unprecedented discoveries in areas as diverse as human medicine, agriculture, conservation biology and biotechnology. You'll learn from leading scientists who have contributed to breakthroughs across biotechnology, animal, plant and medical sciences.
Studying cell biology will equip you for a range of career opportunities within education, research, biotechnology, agriculture, medicine, conservation or government agencies.
You’ll learn the fundamentals of general, physical, organic and inorganic chemistry and specialise in areas such as:
- synthetic chemistry, where you explore the synthesis of complex molecules used in drugs, explosives, paints and cosmetics
- computational chemistry, involving the use of advanced theoretical calculations and high-power supercomputers to understand and predict the structures and reactivities of molecules and short-lived intermediate species
- nanoscience, to explore the processes of self-assembly enabling the controlled arrangement of atoms and molecules and the chemistry at interfaces
- medicinal chemistry, to explore molecular design and the modification of compound properties to enhance pharmaceutical applications as evaluated through bioassays.
All of these areas involve access to advanced instrumental techniques and the development of skills that employers value.
You will be equipped to pursue a diverse range of career opportunities. These include roles as a chemist, materials scientist, environmental scientist, biochemist, toxicologist or forensic scientist.
Other jobs include scientific journalist, quality assurance manager, pharmaceutical sales representative, patent examiner, teacher, and roles in marketing and conservation.
This major is accredited by the Royal Australian Chemical Institute.
In this major, you'll dive into the scientific study of coastal processes, oceanography, ecology, marine geology, and marine conservation.
You’ll learn to apply a wide range of evidence-based environmental and conservation strategies to protect vital coastal habitats and marine ecosystems across the globe.
Led by Australia’s leading marine researchers, you’ll gain extensive fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.
Enhance your employability by combining your speciality with a minor in a broad range of complementary fields including ecology and conversation biology, Earth science, genetics, microbiology or computational science.
Demand for highly skilled coastal and marine scientists is on the rise. You’ll find opportunities in various fields including:
- teaching and universities
- fisheries laboratories
- environmental consultancies
- marine parks
- coastal management
- government departments.
You’ll learn how remote-sensing technologies and geographic information systems (GIS) are used to analyse geological processes and monitor changes in the Earth’s environment.
Dig deeper into our mineral and energy sources by exploring topics such as mineral and rock analysis, mining geology, environmental geology or geochemistry. Develop and apply your knowledge through practical laboratory experience, fieldwork, and specialised seminars.
You may choose to study electives in coastal and ocean science to deepen your understanding of oceanography and help create a sustainable future for marine environments.
You’ll be equipped to pursue a career in the education, natural resource, energy or environmental sectors. Alternately, help contribute to new scientific knowledge by progressing into a research-based honours degree.
Ecology and conservation biology are vital for solving the environmental challenges our society is facing today.
You’ll be taught by internationally renowned conservation experts and can choose to specialise in conservation biology, marine ecology or evolutionary ecology.
Gain real-world experience in solving ecological problems by conducting fieldwork in a range of rainforest, outback and marine environments.
You’ll be equipped to tackle global issues such as biodiversity loss, climate change, diminishing natural resources and the environmental impacts of human activity.
You’ll advance your knowledge in genetic structure, genetic interaction and the genetic basis of traits.
We'll expand your critical thinking and teach you to analyse complex biological data using the latest genetic technologies.
You’ll learn to translate genetic information into meaningful insights that may lead to new discoveries.
Studying genetics will prepare you for a broad range of opportunities across education, ecology, research, medicine and agriculture.
Blending theory with real-world experience, you’ll learn to apply geographical information science (GIS) software and remote-sensing technologies for data analysis, data modelling and developing map visualisations.
We broaden your critical-thinking and teach you how to apply GIS to solve key environmental, societal or planning issues faced in today’s modern world.
You’ll be equipped to pursue a broad range of career opportunities, including roles in education, natural resource management, national parks and wildlife conservation.
This major will challenge and expand your problem solving, logical thinking and conceptual ability. You'll gain quantitative and analytical skills, along with a foundation of calculus, linear algebra, probability, discrete mathematics, mathematical analysis and modelling.
You’ll develop and apply your knowledge through practical experience, structured tutorials and specialised lectures.
Our comprehensive mathematical training equips you for a broad range of opportunities in education, banking, finance, insurance, business, engineering, science, information technology and risk management.
Studying mathematics also gives you a strong foundation to continue into a higher degree by research and excel in research positions within universities, government agencies and private companies.
You’ll study microorganisms, the immune system, microbial virulence, disease states and response to infection.
Learn how vaccines protect animals and humans from infectious diseases. Discover the latest advances in vaccine development from your lecturers who are globally recognised experts.
You’ll focus on immunology, virology, parasitology, environmental microbiology, microbial biotechnology and microbial genomics. Study bacterial, fungal and viral infections.
Apply your knowledge in weekly laboratory practicals. Gain skills in specialist biomedical and molecular techniques used to diagnose and characterise infectious microbes and in the development of new diagnostics. Problem-based scenarios will enhance your analytical, research and communication skills.
The growth in biotechnology, aquaculture and emerging disease threats to plant, animal and human health globally has increased job opportunities for microbiologists. You’ll be equipped for roles in agriculture, environmental, chemical, pharmaceutical, medical, food processing and veterinary companies. Studying microbiology can lead to rewarding career opportunities in specialist areas such as forensics, biosecurity and quarantine in government agencies.
Or kickstart your career in research by progressing into a research-based honours degree.
Led by internationally recognised researchers, you’ll study the laws of physics and explore how these principles are applied in our everyday life – from understanding the nature of time to developing new technologies.
You'll be able to combine your scientific and mathematical knowledge with skills in computer programming and statistics to understand theories relating to quantum mechanics, biophotonics, astronomy or astrophysics. Or apply your knowledge to develop advanced materials, electronic and optical devices.
Your high-level technical, analytical and problem-solving skills will lead you to a wide range of rewarding opportunities in sectors such as education, finance, engineering, computing and management.
Alternatively, continue into a higher degree by research to uncover new scientific knowledge or apply your findings to develop new devices, products or processes.
In this major, you’ll learn and apply the science behind breeding high-yielding, pest-resistant crops to help farmers increase their productivity.
You'll study ecology, plant pathology, plant physiology and plant biotechnology, and apply your knowledge to use plant-based sources to develop biofuels, medicines or healthier food products.
Studying plant science can lead to rewarding career opportunities as a teacher, researcher or consultant with multinational companies, universities or government departments.
In this major, you'll explore topics like brain function, memory, conscious experience, lifespan development and social behaviour, together with the full spectrum of functional and dysfunctional behaviours.
Graduates undertake careers in education, human resources, mental health services, youth and child support work, or fields as diverse as marketing, aged care and corrective services.
Through this major, you’ll investigate animal morphology, development and genetics, behaviour, ecology, physiology, biochemistry and molecular biology.
We'll expand your knowledge of climate change biology, wildlife and conservation biology, entomology, environmental physiology, marine biology, fisheries biology and aquaculture, terrestrial ecology, molecular ecology and mathematical applications in biology.
You can combine your study of animals with biostatistics, ecology, evolution, genetics and insect science and gain practical experience through field courses offered in the Australian outback, rainforests, Stradbroke Island and the Great Barrier Reef.
Zoology offers a large number of career options, ranging from field-based conservation to teaching in education institutions.
Alternatively, kick-start your career in research by progressing into a higher degree by research.
Minors
Tailor your studies to suit your goals. This program offers these options:
Learn advanced mathematical techniques to solve problems in a logical, analytical and creative manner.
Build your foundational knowledge in core topics such as applied mathematical analysis, mathematical modelling and the numerical methods used in computer programming.
You'll gain practical mathematical skills that can be applied to areas such as financial mathematics, natural resources and environmental modelling or biological science.
Led by internationally recognised researchers, you’ll explore theories behind the creation of the universe to understand the origin and evolution of galaxies, stars and planets.
Examine the fundamental laws of physics behind how particles and radiation were created, how galaxies and planetary systems form, and how environments for life develop.
You’ll study the physical processes behind the structure of the Milky Way, star formation, stellar atmospheres, gravitational waves, the creation of matter and the cosmic microwave background.
Learn to build computer simulations of the universe to investigate some of the big questions in modern astrophysics and cosmology, including:
- What are dark energy and dark matter?
- How did the Universe begin and how did it end?
- Where did the contents of the Universe come from?
- How and when do galaxies form?
You’ll have access to state-of-the-art computing facilities as well as specialised tools and instruments used in Astrophysics research.
A minor in astrophysics will prepare you for a diverse range of careers in teaching, data science, finance, the space industry, medical physics, mining or the environment.
In this minor, you'll develop a comprehensive understanding of the chemical basis of life and its relevance to research and development in areas like medicine, proteomics, genomics, bioinformatics, biotechnology and genetic engineering.
Learn how molecular events can go wrong in certain diseased states and how this contributes to the development of new drugs.
You’ll develop and apply your knowledge through practical laboratory experience, structured tutorials and specialised seminars.
Study a minor in cell biology to investigate how cellular, genetic, and evolutionary processes affect everyday life.
Examine key concepts and techniques to understand genetic information and investigate cellular processes and cell development in a range of organisms. You’ll apply microscopic techniques to observe how cells function in healthy and diseased states.
The growing availability of biological data is allowing unprecedented discoveries in areas as diverse as human medicine, agriculture, conservation biology and biotechnology. You'll learn from leading scientists who have contributed to breakthroughs across biotechnology, animal, plant and medical sciences.
Studying a minor cell biology will add depth to your scientific knowledge and enhance your employability for a wide range of opportunities within education, research, biotechnology, agriculture, medicine, conservation or government agencies.
Gain chemical knowledge about cellular processes and biomolecular interactions and explore the chemical, computational and imaging techniques used to analyse them.
You'll apply the principles of inorganic and organic chemistry to investigate the nature of chemical reactions in biological systems at the molecular level.
Studying chemical biology will complement areas such as biochemistry and molecular biology, genetics, biological and biomedical sciences.
You’ll learn the fundamentals of general, physical, organic and inorganic chemistry and specialise in areas such as:
- synthetic chemistry, where you explore the synthesis of complex molecules used in drugs, explosives, paints and cosmetics
- computational chemistry, involving the use of advanced theoretical calculations and high-power supercomputers to understand and predict the structures and reactivities of molecules and short-lived intermediate species
- nanoscience, to explore the processes of self-assembly enabling the controlled arrangement of atoms and molecules and the chemistry at interfaces
- medicinal chemistry, to explore molecular design and the modification of compound properties to enhance pharmaceutical applications as evaluated through bioassays.
All of these areas involve access to advanced instrumental techniques and the development of skills that employers value.
In this minor, you'll dive into the scientific study of coastal processes, oceanography, ecology, marine geology, and marine conservation.
You’ll learn to apply a wide range of evidence-based environmental and conservation strategies to protect vital coastal habitats and marine ecosystems across the globe.
Led by Australia’s leading marine researchers, you’ll gain fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.
Studying a minor in coastal and ocean science will add depth to broad range of complementary fields including ecology and conversation biology, Earth science or zoology.
You’ll be equipped for a broad range of opportunities in areas such as:
- education
- natural resource management
- conservation
- environmental management
- government departments.
In the Data Science minor, you'll delve into computing, statistics, mathematics and business.
You will understand the fundamental techniques for end-to-end processing to transform data into information. Explore machine learning, data visualisation, data mining and statistical modelling.
You'll learn to use data ethically and understand the legal considerations for data science and business communication.
You'll gain hands-on experience with relevant big data tools and technologies.
Apply creative and disruptive thinking to complex data science challenges and problems globally.
Understanding human and animal development is fundamental to medicine and biomedicine.
State-of-the-art medical therapeutic strategies are built on innovative discoveries from developmental biology, including stem cells, cell engineering, artificial organs, 3D printing and tissue regeneration.
Developmental biology is key to understanding health and disease. It consolidates knowledge from anatomy, physiology, genetics, molecular biology and pharmacology to provide students with an integrated understanding of human development.
Learn from leading researchers and apply your theoretical knowledge in the laboratories where medical breakthroughs are taking place.
You’ll learn how remote-sensing technologies and geographic information systems (GIS) are used to analyse geological processes and monitor changes in the Earth’s environment.
Dig deeper into our mineral and energy sources by exploring topics such as mineral and rock analysis, mining geology, environmental geology or geochemistry. Develop and apply your knowledge through practical laboratory experience, fieldwork, and specialised seminars.
You may choose to combine your minor with a major in coastal and ocean science or marine biology to deepen your understanding of oceanography and help create a sustainable future for marine environments.
You’ll be equipped to pursue employment opportunities in the education, natural resource, energy or environmental sectors.
Ecology and conservation biology are vital for solving the environmental challenges our society is facing today.
You’ll be taught by internationally renowned conservation experts and can choose to specialise in conservation biology, marine ecology or evolutionary ecology.
Gain real-world experience in solving ecological problems by conducting fieldwork in a range of rainforest, outback and marine environments.
You’ll be equipped to tackle global issues such as biodiversity loss, climate change, diminishing natural resources and the environmental impacts of human activity.
You’ll advance your knowledge in genetic structure, genetic interaction and the genetic basis of traits.
We'll expand your critical thinking and teach you to analyse complex biological data using the latest genetic technologies.
You’ll learn to translate genetic information into meaningful insights that may lead to new discoveries.
Studying genetics will prepare you for a broad range of opportunities across education, ecology, research, medicine and agriculture.
Blending theory with real-world experience, you’ll learn to apply geographical information science (GIS) software and remote-sensing technologies for data analysis, data modelling and developing map visualisations.
We broaden your critical-thinking and teach you how to apply GIS to solve key environmental, societal or planning issues faced in today’s modern world.
You’ll be equipped to pursue a broad range of career opportunities, including roles in education, natural resource management, national parks, and wildlife conservation.
Undertake a minor in human physiology to examine how cell, tissue and organ systems function within the human body.
Learn the vital roles played by our brain, nerves and hormones in controlling cardiovascular, respiratory, reproductive and metabolic processes important to our survival.
Apply scientific methods to investigate how the failure of these systems can result in disease or disorders.
Study physiological functions at a molecular and cellular level to examine how the body’s core processes are altered in diseased states.
Develop a holistic understanding of the complex links between the body, mind and disease by combining your minor with related courses in human anatomy, neuroscience, pharmacology or food science and nutrition.
In-depth knowledge of human physiology is essential if you are considering further study in the field of medicine, biomedical science or allied health. It can also lead to a range of career opportunities across the health, education, science or pharmaceutical sectors.
This minor will challenge and expand your problem solving, logical thinking and conceptual ability. You'll gain quantitative and analytical skills, along with a foundation of calculus, linear algebra, probability, discrete mathematics, mathematical analysis and modelling.
You’ll develop and apply your knowledge through practical experience, structured tutorials, and specialised lectures.
Our comprehensive mathematical training equips you for a broad range of opportunities across education, banking, finance, insurance, business, engineering, science, information technology and risk management.
Studying mathematics also gives you a strong foundation to continue into a higher degree by research and excel in research positions within universities, government agencies and private companies.
In this minor, you'll study the diversity of microorganisms, the immune system, microbial virulence, disease states and the ways in which organisms respond to infection.
You'll learn how vaccines protect animals and humans from infectious diseases, and discover the latest advances in vaccine development from lecturers who are globally recognised experts.
Focusing on the key areas of immunology, virology, parasitology, environmental microbiology, microbial biotechnology and microbial genomics, you'll study bacterial, fungal and viral infections and apply your knowledge in weekly laboratory practicals.
You'll confidently use the specialist biomedical and molecular techniques required to diagnose and characterise infectious microbes and to develop new diagnostics. Problem-based scenarios will enhance your analytical, research and communication skills.
This minor will add depth to your biological sciences knowledge and equip you with essential technical skills to enhance your employability or prepare you for a career in research.
Study neuroscience to deepen your understanding of how the human brain and nervous system function.
Examine the complexities of the brain and nervous system to explore how neural systems develop, process sensory information, control our movement, form memories, react to stress, respond to disease and store vital information about the world around us.
Studying neuroscience will equip you to enter the workforce in fields as diverse as education, business, biotechnology, health, science or the pharmaceutical industry.
Study pharmacology to learn the science behind how drugs work to treat and cure diseases.
You’ll gain comprehensive knowledge on how drugs work in the human body at the molecular cellular and whole-body level, and discover why many drugs do not work in every patient.
You'll learn how active chemical agents in medicines affect our cells, tissue or organs to examine their benefits, side effects and interactions on human health.
Learn the latest techniques to test drug effects and how to evaluate their benefits and risks in treating human diseases.
Gain vital research experience while you study by contributing to projects that could lead to new medical breakthroughs.
A minor in pharmacology will prepare you for employment or research opportunities within healthcare organisations, education, medical research institutions, pharmaceutical or biotechnology companies, universities and hospitals.
Led by internationally recognised researchers, you’ll study the laws of physics and explore how these principles are applied in our everyday life – from understanding the nature of time to developing new technologies.
You'll be able to combine your scientific and mathematical knowledge with skills in computer programming and statistics to understand theories relating to quantum mechanics, biophotonics, astronomy or astrophysics. Or apply your knowledge to develop advanced materials, electronic and optical devices.
Your high-level technical, analytical and problem-solving skills will lead you to a wide range of rewarding opportunities in sectors such as education, finance, engineering, computing and management.
Alternatively, continue into a higher degree by research to kick-start your career in research to uncover new scientific knowledge or apply your findings to develop new devices, products or processes.
In this minor, you’ll learn and apply the science behind breeding high-yielding, pest-resistant crops to help farmers increase their productivity.
You'll study ecology, plant pathology, plant physiology and plant biotechnology, and apply your knowledge to use plant-based sources to develop biofuels, medicines or healthier food products.
Studying plant science can lead to rewarding career opportunities with multinational companies, high schools, universities, or government departments.
In this minor, you'll explore topics like brain function, memory, conscious experience, lifespan development and social behaviour, together with the full spectrum of functional and dysfunctional behaviours.
Graduates undertake careers in education, human resources, mental health services, youth and child support work, or fields a diverse as marketing, aged care and corrective services.
Majors
Tailor your studies to suit your goals. This program offers these options:
Study applied mathematics and learn how advanced mathematical methods are used to develop practical solutions in a variety of real-world contexts.
Build your foundational knowledge in core topics such as applied mathematical analysis, mathematical modelling and the numerical methods used in computer programming.
You'll develop your critical thinking skills and learn advanced mathematical techniques for approaching problems in a logical, analytical and creative manner.
You'll then have the opportunity to apply your expertise in areas of interest such as financial mathematics, natural resources and environmental modelling or biological science.
With practical experience gained through work placements, you'll be prepared for a diverse range of career opportunities in sectors such as education, financial services, engineering, technology and sciences.
You’ll study the molecules, systems and chemical processes that make life possible.
- Discover what drives current research into vaccines and causes of life-threatening diseases.
- Explore the latest applications in eco-friendly industrial processes, agriculture and sustainable food production.
- Visualise the future in synthetic biology, biotechnology, proteomics, genomics, bioinformatics, genetic engineering and drug design.
Your award-winning lecturers are experts who will help you understand and use the latest scientific and industry tools through extensive practical laboratory experience, structured tutorials and specialised seminars.
Career paths include some of the most exciting and challenging roles in agriculture, health, biotechnology and environmental sectors. You’ll find employment as a research biochemist or molecular biologist in pharmaceutical development laboratories in universities, research institutes and companies trying to understand cellular processes, investigating diseases affecting animals and plants, or searching for new biological tools.
Study molecular biology, genetics, physiology, anatomy and immunology – then apply your knowledge in laboratories where medical breakthroughs are taking place.
You’ll put theory into practice and work alongside researchers and healthcare professionals to conduct medical research and test the effectiveness of treatments.
Studying biomedical science can prepare you for a research-based honours program, or employment within the education, the healthcare industry, government, not-for-profit organisations or universities.
Study cell biology to deepen your understanding of how cellular, genetic, and evolutionary processes affect everyday life.
Examine key concepts and techniques to understand genetic information and investigate cellular processes and cell development in a range of organisms. You’ll apply microscopic techniques to observe how cells function in healthy and diseased states.
The growing availability of biological data is allowing unprecedented discoveries in areas as diverse as human medicine, agriculture, conservation biology and biotechnology. You'll learn from leading scientists who have contributed to breakthroughs across biotechnology, animal, plant and medical sciences.
Studying cell biology will equip you for a range of career opportunities within education, research, biotechnology, agriculture, medicine, conservation or government agencies.
You’ll learn the fundamentals of general, physical, organic and inorganic chemistry and specialise in areas such as:
- synthetic chemistry, where you explore the synthesis of complex molecules used in drugs, explosives, paints and cosmetics
- computational chemistry, involving the use of advanced theoretical calculations and high-power supercomputers to understand and predict the structures and reactivities of molecules and short-lived intermediate species
- nanoscience, to explore the processes of self-assembly enabling the controlled arrangement of atoms and molecules and the chemistry at interfaces
- medicinal chemistry, to explore molecular design and the modification of compound properties to enhance pharmaceutical applications as evaluated through bioassays.
All of these areas involve access to advanced instrumental techniques and the development of skills that employers value.
You will be equipped to pursue a diverse range of career opportunities. These include roles as a chemist, materials scientist, environmental scientist, biochemist, toxicologist or forensic scientist.
Other jobs include scientific journalist, quality assurance manager, pharmaceutical sales representative, patent examiner, teacher, and roles in marketing and conservation.
This major is accredited by the Royal Australian Chemical Institute.
In this major, you'll dive into the scientific study of coastal processes, oceanography, ecology, marine geology, and marine conservation.
You’ll learn to apply a wide range of evidence-based environmental and conservation strategies to protect vital coastal habitats and marine ecosystems across the globe.
Led by Australia’s leading marine researchers, you’ll gain extensive fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.
Enhance your employability by combining your speciality with a minor in a broad range of complementary fields including ecology and conversation biology, Earth science, genetics, microbiology or computational science.
Demand for highly skilled coastal and marine scientists is on the rise. You’ll find opportunities in various fields including:
- teaching and universities
- fisheries laboratories
- environmental consultancies
- marine parks
- coastal management
- government departments.
You’ll learn how remote-sensing technologies and geographic information systems (GIS) are used to analyse geological processes and monitor changes in the Earth’s environment.
Dig deeper into our mineral and energy sources by exploring topics such as mineral and rock analysis, mining geology, environmental geology or geochemistry. Develop and apply your knowledge through practical laboratory experience, fieldwork, and specialised seminars.
You may choose to study electives in coastal and ocean science to deepen your understanding of oceanography and help create a sustainable future for marine environments.
You’ll be equipped to pursue a career in the education, natural resource, energy or environmental sectors. Alternately, help contribute to new scientific knowledge by progressing into a research-based honours degree.
Ecology and conservation biology are vital for solving the environmental challenges our society is facing today.
You’ll be taught by internationally renowned conservation experts and can choose to specialise in conservation biology, marine ecology or evolutionary ecology.
Gain real-world experience in solving ecological problems by conducting fieldwork in a range of rainforest, outback and marine environments.
You’ll be equipped to tackle global issues such as biodiversity loss, climate change, diminishing natural resources and the environmental impacts of human activity.
You’ll advance your knowledge in genetic structure, genetic interaction and the genetic basis of traits.
We'll expand your critical thinking and teach you to analyse complex biological data using the latest genetic technologies.
You’ll learn to translate genetic information into meaningful insights that may lead to new discoveries.
Studying genetics will prepare you for a broad range of opportunities across education, ecology, research, medicine and agriculture.
Blending theory with real-world experience, you’ll learn to apply geographical information science (GIS) software and remote-sensing technologies for data analysis, data modelling and developing map visualisations.
We broaden your critical-thinking and teach you how to apply GIS to solve key environmental, societal or planning issues faced in today’s modern world.
You’ll be equipped to pursue a broad range of career opportunities, including roles in education, natural resource management, national parks and wildlife conservation.
This major will challenge and expand your problem solving, logical thinking and conceptual ability. You'll gain quantitative and analytical skills, along with a foundation of calculus, linear algebra, probability, discrete mathematics, mathematical analysis and modelling.
You’ll develop and apply your knowledge through practical experience, structured tutorials and specialised lectures.
Our comprehensive mathematical training equips you for a broad range of opportunities in education, banking, finance, insurance, business, engineering, science, information technology and risk management.
Studying mathematics also gives you a strong foundation to continue into a higher degree by research and excel in research positions within universities, government agencies and private companies.
You’ll study microorganisms, the immune system, microbial virulence, disease states and response to infection.
Learn how vaccines protect animals and humans from infectious diseases. Discover the latest advances in vaccine development from your lecturers who are globally recognised experts.
You’ll focus on immunology, virology, parasitology, environmental microbiology, microbial biotechnology and microbial genomics. Study bacterial, fungal and viral infections.
Apply your knowledge in weekly laboratory practicals. Gain skills in specialist biomedical and molecular techniques used to diagnose and characterise infectious microbes and in the development of new diagnostics. Problem-based scenarios will enhance your analytical, research and communication skills.
The growth in biotechnology, aquaculture and emerging disease threats to plant, animal and human health globally has increased job opportunities for microbiologists. You’ll be equipped for roles in agriculture, environmental, chemical, pharmaceutical, medical, food processing and veterinary companies. Studying microbiology can lead to rewarding career opportunities in specialist areas such as forensics, biosecurity and quarantine in government agencies.
Or kickstart your career in research by progressing into a research-based honours degree.
Led by internationally recognised researchers, you’ll study the laws of physics and explore how these principles are applied in our everyday life – from understanding the nature of time to developing new technologies.
You'll be able to combine your scientific and mathematical knowledge with skills in computer programming and statistics to understand theories relating to quantum mechanics, biophotonics, astronomy or astrophysics. Or apply your knowledge to develop advanced materials, electronic and optical devices.
Your high-level technical, analytical and problem-solving skills will lead you to a wide range of rewarding opportunities in sectors such as education, finance, engineering, computing and management.
Alternatively, continue into a higher degree by research to uncover new scientific knowledge or apply your findings to develop new devices, products or processes.
In this major, you’ll learn and apply the science behind breeding high-yielding, pest-resistant crops to help farmers increase their productivity.
You'll study ecology, plant pathology, plant physiology and plant biotechnology, and apply your knowledge to use plant-based sources to develop biofuels, medicines or healthier food products.
Studying plant science can lead to rewarding career opportunities as a teacher, researcher or consultant with multinational companies, universities or government departments.
In this major, you'll explore topics like brain function, memory, conscious experience, lifespan development and social behaviour, together with the full spectrum of functional and dysfunctional behaviours.
Graduates undertake careers in education, human resources, mental health services, youth and child support work, or fields as diverse as marketing, aged care and corrective services.
Through this major, you’ll investigate animal morphology, development and genetics, behaviour, ecology, physiology, biochemistry and molecular biology.
We'll expand your knowledge of climate change biology, wildlife and conservation biology, entomology, environmental physiology, marine biology, fisheries biology and aquaculture, terrestrial ecology, molecular ecology and mathematical applications in biology.
You can combine your study of animals with biostatistics, ecology, evolution, genetics and insect science and gain practical experience through field courses offered in the Australian outback, rainforests, Stradbroke Island and the Great Barrier Reef.
Zoology offers a large number of career options, ranging from field-based conservation to teaching in education institutions.
Alternatively, kick-start your career in research by progressing into a higher degree by research.
Minors
Tailor your studies to suit your goals. This program offers these options:
Learn advanced mathematical techniques to solve problems in a logical, analytical and creative manner.
Build your foundational knowledge in core topics such as applied mathematical analysis, mathematical modelling and the numerical methods used in computer programming.
You'll gain practical mathematical skills that can be applied to areas such as financial mathematics, natural resources and environmental modelling or biological science.
Led by internationally recognised researchers, you’ll explore theories behind the creation of the universe to understand the origin and evolution of galaxies, stars and planets.
Examine the fundamental laws of physics behind how particles and radiation were created, how galaxies and planetary systems form, and how environments for life develop.
You’ll study the physical processes behind the structure of the Milky Way, star formation, stellar atmospheres, gravitational waves, the creation of matter and the cosmic microwave background.
Learn to build computer simulations of the universe to investigate some of the big questions in modern astrophysics and cosmology, including:
- What are dark energy and dark matter?
- How did the Universe begin and how did it end?
- Where did the contents of the Universe come from?
- How and when do galaxies form?
You’ll have access to state-of-the-art computing facilities as well as specialised tools and instruments used in Astrophysics research.
A minor in astrophysics will prepare you for a diverse range of careers in teaching, data science, finance, the space industry, medical physics, mining or the environment.
In this minor, you'll develop a comprehensive understanding of the chemical basis of life and its relevance to research and development in areas like medicine, proteomics, genomics, bioinformatics, biotechnology and genetic engineering.
Learn how molecular events can go wrong in certain diseased states and how this contributes to the development of new drugs.
You’ll develop and apply your knowledge through practical laboratory experience, structured tutorials and specialised seminars.
Study a minor in cell biology to investigate how cellular, genetic, and evolutionary processes affect everyday life.
Examine key concepts and techniques to understand genetic information and investigate cellular processes and cell development in a range of organisms. You’ll apply microscopic techniques to observe how cells function in healthy and diseased states.
The growing availability of biological data is allowing unprecedented discoveries in areas as diverse as human medicine, agriculture, conservation biology and biotechnology. You'll learn from leading scientists who have contributed to breakthroughs across biotechnology, animal, plant and medical sciences.
Studying a minor cell biology will add depth to your scientific knowledge and enhance your employability for a wide range of opportunities within education, research, biotechnology, agriculture, medicine, conservation or government agencies.
Gain chemical knowledge about cellular processes and biomolecular interactions and explore the chemical, computational and imaging techniques used to analyse them.
You'll apply the principles of inorganic and organic chemistry to investigate the nature of chemical reactions in biological systems at the molecular level.
Studying chemical biology will complement areas such as biochemistry and molecular biology, genetics, biological and biomedical sciences.
You’ll learn the fundamentals of general, physical, organic and inorganic chemistry and specialise in areas such as:
- synthetic chemistry, where you explore the synthesis of complex molecules used in drugs, explosives, paints and cosmetics
- computational chemistry, involving the use of advanced theoretical calculations and high-power supercomputers to understand and predict the structures and reactivities of molecules and short-lived intermediate species
- nanoscience, to explore the processes of self-assembly enabling the controlled arrangement of atoms and molecules and the chemistry at interfaces
- medicinal chemistry, to explore molecular design and the modification of compound properties to enhance pharmaceutical applications as evaluated through bioassays.
All of these areas involve access to advanced instrumental techniques and the development of skills that employers value.
In this minor, you'll dive into the scientific study of coastal processes, oceanography, ecology, marine geology, and marine conservation.
You’ll learn to apply a wide range of evidence-based environmental and conservation strategies to protect vital coastal habitats and marine ecosystems across the globe.
Led by Australia’s leading marine researchers, you’ll gain fieldwork experience at UQ’s Heron Island Research Station on the southern Great Barrier Reef and UQ’s Moreton Bay Research Station on North Stradbroke Island.
Studying a minor in coastal and ocean science will add depth to broad range of complementary fields including ecology and conversation biology, Earth science or zoology.
You’ll be equipped for a broad range of opportunities in areas such as:
- education
- natural resource management
- conservation
- environmental management
- government departments.
In the Data Science minor, you'll delve into computing, statistics, mathematics and business.
You will understand the fundamental techniques for end-to-end processing to transform data into information. Explore machine learning, data visualisation, data mining and statistical modelling.
You'll learn to use data ethically and understand the legal considerations for data science and business communication.
You'll gain hands-on experience with relevant big data tools and technologies.
Apply creative and disruptive thinking to complex data science challenges and problems globally.
Understanding human and animal development is fundamental to medicine and biomedicine.
State-of-the-art medical therapeutic strategies are built on innovative discoveries from developmental biology, including stem cells, cell engineering, artificial organs, 3D printing and tissue regeneration.
Developmental biology is key to understanding health and disease. It consolidates knowledge from anatomy, physiology, genetics, molecular biology and pharmacology to provide students with an integrated understanding of human development.
Learn from leading researchers and apply your theoretical knowledge in the laboratories where medical breakthroughs are taking place.
You’ll learn how remote-sensing technologies and geographic information systems (GIS) are used to analyse geological processes and monitor changes in the Earth’s environment.
Dig deeper into our mineral and energy sources by exploring topics such as mineral and rock analysis, mining geology, environmental geology or geochemistry. Develop and apply your knowledge through practical laboratory experience, fieldwork, and specialised seminars.
You may choose to combine your minor with a major in coastal and ocean science or marine biology to deepen your understanding of oceanography and help create a sustainable future for marine environments.
You’ll be equipped to pursue employment opportunities in the education, natural resource, energy or environmental sectors.
Ecology and conservation biology are vital for solving the environmental challenges our society is facing today.
You’ll be taught by internationally renowned conservation experts and can choose to specialise in conservation biology, marine ecology or evolutionary ecology.
Gain real-world experience in solving ecological problems by conducting fieldwork in a range of rainforest, outback and marine environments.
You’ll be equipped to tackle global issues such as biodiversity loss, climate change, diminishing natural resources and the environmental impacts of human activity.
You’ll advance your knowledge in genetic structure, genetic interaction and the genetic basis of traits.
We'll expand your critical thinking and teach you to analyse complex biological data using the latest genetic technologies.
You’ll learn to translate genetic information into meaningful insights that may lead to new discoveries.
Studying genetics will prepare you for a broad range of opportunities across education, ecology, research, medicine and agriculture.
Blending theory with real-world experience, you’ll learn to apply geographical information science (GIS) software and remote-sensing technologies for data analysis, data modelling and developing map visualisations.
We broaden your critical-thinking and teach you how to apply GIS to solve key environmental, societal or planning issues faced in today’s modern world.
You’ll be equipped to pursue a broad range of career opportunities, including roles in education, natural resource management, national parks, and wildlife conservation.
Undertake a minor in human physiology to examine how cell, tissue and organ systems function within the human body.
Learn the vital roles played by our brain, nerves and hormones in controlling cardiovascular, respiratory, reproductive and metabolic processes important to our survival.
Apply scientific methods to investigate how the failure of these systems can result in disease or disorders.
Study physiological functions at a molecular and cellular level to examine how the body’s core processes are altered in diseased states.
Develop a holistic understanding of the complex links between the body, mind and disease by combining your minor with related courses in human anatomy, neuroscience, pharmacology or food science and nutrition.
In-depth knowledge of human physiology is essential if you are considering further study in the field of medicine, biomedical science or allied health. It can also lead to a range of career opportunities across the health, education, science or pharmaceutical sectors.
This minor will challenge and expand your problem solving, logical thinking and conceptual ability. You'll gain quantitative and analytical skills, along with a foundation of calculus, linear algebra, probability, discrete mathematics, mathematical analysis and modelling.
You’ll develop and apply your knowledge through practical experience, structured tutorials, and specialised lectures.
Our comprehensive mathematical training equips you for a broad range of opportunities across education, banking, finance, insurance, business, engineering, science, information technology and risk management.
Studying mathematics also gives you a strong foundation to continue into a higher degree by research and excel in research positions within universities, government agencies and private companies.
In this minor, you'll study the diversity of microorganisms, the immune system, microbial virulence, disease states and the ways in which organisms respond to infection.
You'll learn how vaccines protect animals and humans from infectious diseases, and discover the latest advances in vaccine development from lecturers who are globally recognised experts.
Focusing on the key areas of immunology, virology, parasitology, environmental microbiology, microbial biotechnology and microbial genomics, you'll study bacterial, fungal and viral infections and apply your knowledge in weekly laboratory practicals.
You'll confidently use the specialist biomedical and molecular techniques required to diagnose and characterise infectious microbes and to develop new diagnostics. Problem-based scenarios will enhance your analytical, research and communication skills.
This minor will add depth to your biological sciences knowledge and equip you with essential technical skills to enhance your employability or prepare you for a career in research.
Study neuroscience to deepen your understanding of how the human brain and nervous system function.
Examine the complexities of the brain and nervous system to explore how neural systems develop, process sensory information, control our movement, form memories, react to stress, respond to disease and store vital information about the world around us.
Studying neuroscience will equip you to enter the workforce in fields as diverse as education, business, biotechnology, health, science or the pharmaceutical industry.
Study pharmacology to learn the science behind how drugs work to treat and cure diseases.
You’ll gain comprehensive knowledge on how drugs work in the human body at the molecular cellular and whole-body level, and discover why many drugs do not work in every patient.
You'll learn how active chemical agents in medicines affect our cells, tissue or organs to examine their benefits, side effects and interactions on human health.
Learn the latest techniques to test drug effects and how to evaluate their benefits and risks in treating human diseases.
Gain vital research experience while you study by contributing to projects that could lead to new medical breakthroughs.
A minor in pharmacology will prepare you for employment or research opportunities within healthcare organisations, education, medical research institutions, pharmaceutical or biotechnology companies, universities and hospitals.
Led by internationally recognised researchers, you’ll study the laws of physics and explore how these principles are applied in our everyday life – from understanding the nature of time to developing new technologies.
You'll be able to combine your scientific and mathematical knowledge with skills in computer programming and statistics to understand theories relating to quantum mechanics, biophotonics, astronomy or astrophysics. Or apply your knowledge to develop advanced materials, electronic and optical devices.
Your high-level technical, analytical and problem-solving skills will lead you to a wide range of rewarding opportunities in sectors such as education, finance, engineering, computing and management.
Alternatively, continue into a higher degree by research to kick-start your career in research to uncover new scientific knowledge or apply your findings to develop new devices, products or processes.
In this minor, you’ll learn and apply the science behind breeding high-yielding, pest-resistant crops to help farmers increase their productivity.
You'll study ecology, plant pathology, plant physiology and plant biotechnology, and apply your knowledge to use plant-based sources to develop biofuels, medicines or healthier food products.
Studying plant science can lead to rewarding career opportunities with multinational companies, high schools, universities, or government departments.
In this minor, you'll explore topics like brain function, memory, conscious experience, lifespan development and social behaviour, together with the full spectrum of functional and dysfunctional behaviours.
Graduates undertake careers in education, human resources, mental health services, youth and child support work, or fields a diverse as marketing, aged care and corrective services.
Fees and Scholarships
Indicative annual fee
Approximate yearly cost of tuition (16 units). Your fees will vary according to your selected courses and study load. Fees are reviewed each year and may increase.
$6,604
2024
$6,604
2024
Approximate yearly cost of tuition (16 units). Your fees will vary according to your study load. Fees are reviewed each year and may increase.
AUD $46,400
2024
AUD $46,400
2024
Additional costs
- There may be additional course costs associated with travel or materials.
- Students are expected to fund travel and living expenses associated with placements, some of which may be outside the Brisbane metropolitan area.
- All students are required to successfully meet the Literacy and Numeracy Test for Initial Teacher Education (LANTITE) standards prior to graduation.
- Students are responsible for the cost of the LANTITE (approximately $196 or $98 per test). ACER website (https://teacheredtest.acer.edu.au) lists current fees.
- Please contact the School of Education for further details (education@uq.edu.au) or visit the School of Education office.
- For more information on the LANTITE tests, including sample tests and registration information, please visit the Australian Council for Educational Research website: https://teacheredtest.acer.edu.au
- Students are responsible for the cost of transportation and accommodation to attend residential schools or practicals.
- A clinical uniform shirt is required and may be purchased through the School.
Government assistance
Financial aid
As an international student, you might be eligible for financial aid – either from your home country, or from the Australian Government.
HECS-HELP
Domestic places in the Bachelors of Science / Education (Secondary) are Commonwealth Supported. This means the cost of your education is shared between you and the Australian Government.
Instead of tuition fees, Commonwealth Supported students pay what are called student contribution amounts.
HECS-HELP is an Australian Government loan scheme to assist eligible students with the cost of their student contribution amounts.
Centrelink support
The Australian Government offers a number of income-support payments to eligible Australian university students.
Scholarships
You may be eligible for more than 100 scholarships, including:
How to apply
Applying online
If your senior schooling is from outside Australia, you can submit your application to UQ. Or, if you prefer, you can use an approved UQ agent in your country.
The program code for the Bachelors of Science / Education (Secondary) is 2479.
Find out more about applying for undergraduate study
If your senior schooling is from Australia
Submit your application to the Queensland Tertiary Admissions Centre if you're an international student who is currently studying:
- Australian Year 12 (in Australia or another country), or
- the International Baccalaureate in Australia.
The QTAC code for the Bachelors of Science / Education (Secondary) is 731302.
Applying through QTAC
All domestic applications should be submitted to the Queensland Tertiary Admissions Centre (QTAC).
The QTAC code for the Bachelors of Science / Education (Secondary) is 731302.
Important dates
If you’re studying Year 12 in Australia, go to the QTAC website to check the closing date for this program.
If you’re applying to UQ, the closing date for this program is:
- To commence study in semester 1 - November 30 of the previous year.
To learn more about UQ dates, including semester start dates, view the Academic Calendar.
Important dates
To check the closing date for this program, go to the QTAC website.
To learn more about UQ dates, including semester start dates, view the Academic Calendar.
Admissions schemes
Applying to university can be both exciting and daunting, which is why we’ve tried to make the process as simple as we can.
We have several schemes in place to improve your chances of getting a place at UQ.
Pathway options
A rank or score doesn’t determine your potential.
If you're not offered a place in your first-choice program – or if you don't meet the entry requirements – you still have a number of options.
Aboriginal and Torres Strait Islander applicants
For support with applying – or if you have any questions about university life – get in touch with our Aboriginal and Torres Strait Islander Studies Unit.
Explore other programs
Express yourself. And your interest.
They say choosing a degree is hard, which is why we've made it easy. Register your interest and we'll send you everything you need to know about applying to UQ.